An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 158-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The main point of this paper is to suggest that plane curves with cusps, nodes, and tacnodes only could still have complicated fundamental groups of their complements. After describing such a curve, we compare our results with the results of Allcock, Carlson, and Toledo from the perspective of homological mirror symmetry. We connect some classical ideas of Zariski with some modern ideas emphasizing unity of mathematics—a leading line in Tyurin's work.
@article{TRSPY_2004_246_a11,
     author = {L. Katzarkov and N. Nirschl},
     title = {An {Algebraic} {Curve} $\Sigma\subseteq\mathbb{CP}^2$ with {Interesting} {Topology}},
     journal = {Informatics and Automation},
     pages = {158--180},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a11/}
}
TY  - JOUR
AU  - L. Katzarkov
AU  - N. Nirschl
TI  - An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology
JO  - Informatics and Automation
PY  - 2004
SP  - 158
EP  - 180
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a11/
LA  - en
ID  - TRSPY_2004_246_a11
ER  - 
%0 Journal Article
%A L. Katzarkov
%A N. Nirschl
%T An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology
%J Informatics and Automation
%D 2004
%P 158-180
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a11/
%G en
%F TRSPY_2004_246_a11
L. Katzarkov; N. Nirschl. An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 158-180. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a11/