Topologically Trivial Sheaves on Curves with Simplest Singularities
Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 10-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topologically trivial vector bundles on nodal curves were considered in Tyurin's book Quantization, Classical and Quantum Field Theory, and Theta Functions. In the present paper, a compactification of the moduli of such vector bundles by topologically trivial torsion-free sheaves is constructed, and a stability criterion for topologically trivial sheaves of ranks $1$ and $2$ is given.
@article{TRSPY_2004_246_a1,
     author = {I. V. Artamkin},
     title = {Topologically {Trivial} {Sheaves} on {Curves} with {Simplest} {Singularities}},
     journal = {Informatics and Automation},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a1/}
}
TY  - JOUR
AU  - I. V. Artamkin
TI  - Topologically Trivial Sheaves on Curves with Simplest Singularities
JO  - Informatics and Automation
PY  - 2004
SP  - 10
EP  - 19
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a1/
LA  - ru
ID  - TRSPY_2004_246_a1
ER  - 
%0 Journal Article
%A I. V. Artamkin
%T Topologically Trivial Sheaves on Curves with Simplest Singularities
%J Informatics and Automation
%D 2004
%P 10-19
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a1/
%G ru
%F TRSPY_2004_246_a1
I. V. Artamkin. Topologically Trivial Sheaves on Curves with Simplest Singularities. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 10-19. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a1/

[1] Tyurin A. N., Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsii, Inst. kompyut. issled., Moskva. Izhevsk, 2003 | Zbl

[2] Dedonne Zh., Kerrol Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974 | MR

[3] Oda T., Seshadri C. S., “Compactifications of the generalized Jacobian variety”, Trans. Amer. Math. Soc., 253 (1979), 1–90 | DOI | MR | Zbl

[4] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–133 | MR

[5] Bhosle U., “Generalised parabolic bundles and applications to torsion-free sheaves on nodal curves”, Ark. Mat., 30:2 (1992), 187–215 | DOI | MR | Zbl

[6] Artamkin I. V., “Kanonicheskie otobrazheniya punktirovannykh krivykh s prosteishimi osobennostyami”, Mat. sb., 195:5 (2004), 3–32 | MR | Zbl