Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_246_a1, author = {I. V. Artamkin}, title = {Topologically {Trivial} {Sheaves} on {Curves} with {Simplest} {Singularities}}, journal = {Informatics and Automation}, pages = {10--19}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a1/} }
I. V. Artamkin. Topologically Trivial Sheaves on Curves with Simplest Singularities. Informatics and Automation, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 10-19. http://geodesic.mathdoc.fr/item/TRSPY_2004_246_a1/
[1] Tyurin A. N., Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsii, Inst. kompyut. issled., Moskva. Izhevsk, 2003 | Zbl
[2] Dedonne Zh., Kerrol Dzh., Mamford D., Geometricheskaya teoriya invariantov, Mir, M., 1974 | MR
[3] Oda T., Seshadri C. S., “Compactifications of the generalized Jacobian variety”, Trans. Amer. Math. Soc., 253 (1979), 1–90 | DOI | MR | Zbl
[4] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–133 | MR
[5] Bhosle U., “Generalised parabolic bundles and applications to torsion-free sheaves on nodal curves”, Ark. Mat., 30:2 (1992), 187–215 | DOI | MR | Zbl
[6] Artamkin I. V., “Kanonicheskie otobrazheniya punktirovannykh krivykh s prosteishimi osobennostyami”, Mat. sb., 195:5 (2004), 3–32 | MR | Zbl