Renormalization in Quantum Electrodynamics and Hopf Algebras
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 288-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, A. Connes and D. Kreimer introduced the Hopf algebra structure on Feynman graphs in scalar quantum field theory and show that the renormalization can be reduced to the solution of the Riemann–Hilbert problem. In this paper, we suggest a generalization of their construction to the case of quantum electrodynamics. Moreover, we define the action of a gauge group on the Hopf algebra of Feynman diagrams and clarify how this action interacts with the Hopf algebra structure.
@article{TRSPY_2004_245_a29,
     author = {I. V. Volovich and D. V. Prokhorenko},
     title = {Renormalization in {Quantum} {Electrodynamics} and {Hopf} {Algebras}},
     journal = {Informatics and Automation},
     pages = {288--295},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a29/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - D. V. Prokhorenko
TI  - Renormalization in Quantum Electrodynamics and Hopf Algebras
JO  - Informatics and Automation
PY  - 2004
SP  - 288
EP  - 295
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a29/
LA  - ru
ID  - TRSPY_2004_245_a29
ER  - 
%0 Journal Article
%A I. V. Volovich
%A D. V. Prokhorenko
%T Renormalization in Quantum Electrodynamics and Hopf Algebras
%J Informatics and Automation
%D 2004
%P 288-295
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a29/
%G ru
%F TRSPY_2004_245_a29
I. V. Volovich; D. V. Prokhorenko. Renormalization in Quantum Electrodynamics and Hopf Algebras. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 288-295. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a29/

[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[2] Khepp K., Teoriya perenormirovok, Nauka, M., 1974 | MR

[3] Connes A., Kreimer D., “Renormalization in quantum field theory and Riemann–Hilbert problem, I”, Commun. Math. Phys., 210 (2000), 249–273 ; arXiv: /hep-th/9912092 | DOI | MR | Zbl

[4] Connes A., Kreimer D., “Renormalization in quantum field theory and Riemann–Hilbert problem, II”, Commun. Math. Phys., 216 (2001), 215–241 ; arXiv: /hep-th/0003188 | DOI | MR | Zbl

[5] Dragovich B., Volovich I. V., “$p$-Adic strings and noncommutativity”, Noncommutativity structures in mathematics and physics, eds. S. Duplij, J. Wess, Kluwer, Dordrecht, 2001, 391–399 | MR

[6] Aref'eva I. Ya., Volovich I. V., “Quantum group particles and non-archimedean geometry”, Phys. Lett. B., 268 (1991), 179–187 | DOI | MR

[7] Bolibrukh A. A., Fuksovy differentsialnye uravneniya i golomorfnye vektornye rassloeniya, MTsNMO, M., 2000

[8] Gerasimov A., Morozov A., Selivanov K., “Bogolubov's recursion and integrability of effective actions”, Intern. J. Mod. Phys. A., 16 (2001), 1531–1558 | DOI | MR | Zbl

[9] Malyshev D., Hopf algebra of ribbon graphs and renormalization, , 2001 arXiv: /hep-th/0112146 | MR

[10] Kastler D., Connes–Moscovici–Kreimer Hopf algebras, , 2001 arXiv: /math-ph/0104017 | MR

[11] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[12] Kollinz Dzh., Perenormirovka, Mir, M., 1988 | MR