Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 264-272
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $k$ be a $\mathfrak p$-adic field, and let $\mathcal D$ be the class of all discrete dynamical systems defined by polynomials of the kind $h(x)=x+g(x)$, where $g(x)\in k[x]$ is irreducible. Using Krasner's lemma as a tool, we investigate the stability of this class with respect to perturbations of the kind $h_r(x)=h(x)+r(x)$, where $h(x)\in \mathcal D$ and $r(x)\in k[x]$.
@article{TRSPY_2004_245_a26,
author = {P.-A. Svensson},
title = {Perturbed {Dynamical} {Systems} in $\mathfrak p${-Adic} {Fields}},
journal = {Informatics and Automation},
pages = {264--272},
publisher = {mathdoc},
volume = {245},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a26/}
}
P.-A. Svensson. Perturbed Dynamical Systems in $\mathfrak p$-Adic Fields. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 264-272. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a26/