Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_245_a24, author = {W. H. Schikhof}, title = {An {Approach} to the {Ultrametric} {Moment} {Problem}}, journal = {Informatics and Automation}, pages = {251--256}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a24/} }
W. H. Schikhof. An Approach to the Ultrametric Moment Problem. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a24/
[1] De Grande-De Kimpe N., Khrennikov A., Van Hamme L., “The Fourier transform for $p$-adic tempered distributions”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 207, M. Dekker, New York, 1999, 97–125 | MR
[2] Van Hamme L., “The $p$-adic moment problem”, $p$-Adic functional analysis, eds. N. De Grande-De Kimpe, S. Navarro, W. Schikhof, Univ. Santiago, Santiago, Chile, 1994, 151–163
[3] Martinez-Maurica J., Navarro S., “$p$-Adic Ascoli theorems”, Rev. Mat. Univ. Complut. Madrid, 3 (1990), 19–27 | MR | Zbl
[4] van Rooij A. C. M., Non-Archimedean functional analysis, M. Dekker, New York, 1978 | MR
[5] Schikhof W. H., Ultrametric calculus, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[6] Schikhof W. H., “A perfect duality between $p$-adic Banach spaces and compactoids”, Indag. Math. N.S., 6 (1995), 325–339 | DOI | MR | Zbl