Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_245_a21, author = {Chun-Gil Park}, title = {Poisson {Algebra} {Homomorphisms} and {Poisson} {Brackets}}, journal = {Informatics and Automation}, pages = {218--227}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a21/} }
Chun-Gil Park. Poisson Algebra Homomorphisms and Poisson Brackets. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 218-227. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a21/
[1] Găvruta P., “A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings”, J. Math. Anal. and Appl., 184 (1994), 431–436 | DOI | MR
[2] Goodearl K. R., Letzter E. S., “Quantum $n$-space as a quotient of classical $n$-space”, Trans. Amer. Math. Soc., 352 (2000), 5855–5876 | DOI | MR | Zbl
[3] Jun K., Lee Y., “A generalization of the Hyers–Ulam–Rassias stability of Jensen's equation”, J. Math. Anal. and Appl., 238 (1999), 305–315 | DOI | MR | Zbl
[4] Kadison R. V., Pedersen G., “Means and convex combinations of unitary operators”, Math. Scand., 57 (1985), 249–266 | MR | Zbl
[5] Oh S., Park C., Shin Y., “Quantum $n$-space and Poisson $n$-space”, Commun. Algebra, 30 (2002), 4197–4209 | DOI | MR | Zbl
[6] Oh S., Park C., Shin Y., “A Poincaré–Birkhoff–Witt theorem for Poisson enveloping algebras”, Commun. Algebra, 30 (2002), 4867–4887 | DOI | MR
[7] Park C., “On the stability of the linear mapping in Banach modules”, J. Math. Anal. and Appl., 275 (2002), 711–720 | DOI | MR | Zbl
[8] Park C., Park W., “On the Jensen's equation in Banach modules”, Taiwan. J. Math., 6 (2002), 523–531 | MR
[9] Rassias Th. M., “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72 (1978), 297–300 | DOI | MR | Zbl
[10] Xu P., “Noncommutative Poisson algebras”, Amer. J. Math., 116 (1994), 101–125 | DOI | MR | Zbl