Poisson Algebra Homomorphisms and Poisson Brackets
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 218-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every almost linear mapping $h:\mathcal A\rightarrow\mathcal B$ of a unital Poisson Banach algebra $\mathcal A$ to a unital Poisson Banach algebra $\mathcal B$ is a Poisson algebra homomorphism when $h(x y) = h(x) h(y)$ for all $x, y \in\mathcal A$, and that every almost linear almost multiplicative mapping $h:\mathcal A \rightarrow \mathcal B$ is a Poisson algebra homomorphism when $h(2x) = h(2x)$ or $h(3x) = 3h(x)$ for all $x\in\mathcal A$. Here, the numbers $2$ and $3$ depend on the functional equations given in the almost linear almost multiplicative mappings. We prove that every almost Poisson bracket $B:\mathcal A\times\mathcal A\rightarrow\mathcal A$ on a Banach algebra $\mathcal A$ is a Poisson bracket when $B(2x,z) = B(x,2z) = 2B(x,z)$ or $B(3x,z) = B(x,3z) = 3B(x,z)$ for all $x,z\in\mathcal A$. Here, the numbers $2$ and $3$ depend on the functional equations given in the almost Poisson brackets.
@article{TRSPY_2004_245_a21,
     author = {Chun-Gil Park},
     title = {Poisson {Algebra} {Homomorphisms} and {Poisson} {Brackets}},
     journal = {Informatics and Automation},
     pages = {218--227},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a21/}
}
TY  - JOUR
AU  - Chun-Gil Park
TI  - Poisson Algebra Homomorphisms and Poisson Brackets
JO  - Informatics and Automation
PY  - 2004
SP  - 218
EP  - 227
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a21/
LA  - en
ID  - TRSPY_2004_245_a21
ER  - 
%0 Journal Article
%A Chun-Gil Park
%T Poisson Algebra Homomorphisms and Poisson Brackets
%J Informatics and Automation
%D 2004
%P 218-227
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a21/
%G en
%F TRSPY_2004_245_a21
Chun-Gil Park. Poisson Algebra Homomorphisms and Poisson Brackets. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 218-227. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a21/

[1] Găvruta P., “A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings”, J. Math. Anal. and Appl., 184 (1994), 431–436 | DOI | MR

[2] Goodearl K. R., Letzter E. S., “Quantum $n$-space as a quotient of classical $n$-space”, Trans. Amer. Math. Soc., 352 (2000), 5855–5876 | DOI | MR | Zbl

[3] Jun K., Lee Y., “A generalization of the Hyers–Ulam–Rassias stability of Jensen's equation”, J. Math. Anal. and Appl., 238 (1999), 305–315 | DOI | MR | Zbl

[4] Kadison R. V., Pedersen G., “Means and convex combinations of unitary operators”, Math. Scand., 57 (1985), 249–266 | MR | Zbl

[5] Oh S., Park C., Shin Y., “Quantum $n$-space and Poisson $n$-space”, Commun. Algebra, 30 (2002), 4197–4209 | DOI | MR | Zbl

[6] Oh S., Park C., Shin Y., “A Poincaré–Birkhoff–Witt theorem for Poisson enveloping algebras”, Commun. Algebra, 30 (2002), 4867–4887 | DOI | MR

[7] Park C., “On the stability of the linear mapping in Banach modules”, J. Math. Anal. and Appl., 275 (2002), 711–720 | DOI | MR | Zbl

[8] Park C., Park W., “On the Jensen's equation in Banach modules”, Taiwan. J. Math., 6 (2002), 523–531 | MR

[9] Rassias Th. M., “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72 (1978), 297–300 | DOI | MR | Zbl

[10] Xu P., “Noncommutative Poisson algebras”, Amer. J. Math., 116 (1994), 101–125 | DOI | MR | Zbl