The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A(n,a,y)$ denote a specific weighted average of different zeros of $f^n(x)-x$ for all prime numbers $p\leq y$, where $f(x)=x^p+ax\in\mathbb{F}_p[x]$, $a\neq 0$, and $f^n$ denotes the $n$-fold composition of $f$ by itself. If $a=1$, then $A(n, a, x)\to 0$ as $x\to\infty$, and if $a>1$, then $A(n,a,x) \to 1$ as $x \to \infty$. We also discuss a method for counting the number of linear factors of a polynomial whose zeros are $n$-periodic points of $f(x)\in\mathbb Z[x]$ by using a theorem of Frobenius. Finally, we obtain some results in the monomial case over $p$-adic numbers by using this method.
@article{TRSPY_2004_245_a20,
     author = {M. Nilsson and R. Nyqvist},
     title = {The {Asymptotic} {Number} of {Periodic} {Points} of {Discrete} $p${-Adic} {Dynamical} {Systems}},
     journal = {Informatics and Automation},
     pages = {210--217},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/}
}
TY  - JOUR
AU  - M. Nilsson
AU  - R. Nyqvist
TI  - The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
JO  - Informatics and Automation
PY  - 2004
SP  - 210
EP  - 217
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/
LA  - en
ID  - TRSPY_2004_245_a20
ER  - 
%0 Journal Article
%A M. Nilsson
%A R. Nyqvist
%T The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
%J Informatics and Automation
%D 2004
%P 210-217
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/
%G en
%F TRSPY_2004_245_a20
M. Nilsson; R. Nyqvist. The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/