The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A(n,a,y)$ denote a specific weighted average of different zeros of $f^n(x)-x$ for all prime numbers $p\leq y$, where $f(x)=x^p+ax\in\mathbb{F}_p[x]$, $a\neq 0$, and $f^n$ denotes the $n$-fold composition of $f$ by itself. If $a=1$, then $A(n, a, x)\to 0$ as $x\to\infty$, and if $a>1$, then $A(n,a,x) \to 1$ as $x \to \infty$. We also discuss a method for counting the number of linear factors of a polynomial whose zeros are $n$-periodic points of $f(x)\in\mathbb Z[x]$ by using a theorem of Frobenius. Finally, we obtain some results in the monomial case over $p$-adic numbers by using this method.
@article{TRSPY_2004_245_a20,
author = {M. Nilsson and R. Nyqvist},
title = {The {Asymptotic} {Number} of {Periodic} {Points} of {Discrete} $p${-Adic} {Dynamical} {Systems}},
journal = {Informatics and Automation},
pages = {210--217},
publisher = {mathdoc},
volume = {245},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/}
}
TY - JOUR AU - M. Nilsson AU - R. Nyqvist TI - The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems JO - Informatics and Automation PY - 2004 SP - 210 EP - 217 VL - 245 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/ LA - en ID - TRSPY_2004_245_a20 ER -
M. Nilsson; R. Nyqvist. The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a20/