On the Metric Structure of Ultrametric Spaces
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 182-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our work, we reconsider the old problem of diffusion at the boundary of an ultrametric tree from a “number-theoretic” point of view. Namely, we use modular functions (in particular, the Dedekind $\eta$ function) to construct a “continuous” analogue of the Cayley tree isometrically embedded into the Poincaré upper half-plane. Later, we work with this continuous Cayley tree as with a standard function of a complex variable. In the frameworks of our approach, the results of Ogielsky and Stein on the dynamics on ultrametric spaces are reproduced semi-analytically/semi-numerically. Speculation on the new “geometrical” interpretation of the replica $n\to 0$ limit is proposed.
@article{TRSPY_2004_245_a18,
     author = {S. K. Nechaev and O. A. Vasil'ev},
     title = {On the {Metric} {Structure} of {Ultrametric} {Spaces}},
     journal = {Informatics and Automation},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/}
}
TY  - JOUR
AU  - S. K. Nechaev
AU  - O. A. Vasil'ev
TI  - On the Metric Structure of Ultrametric Spaces
JO  - Informatics and Automation
PY  - 2004
SP  - 182
EP  - 201
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/
LA  - en
ID  - TRSPY_2004_245_a18
ER  - 
%0 Journal Article
%A S. K. Nechaev
%A O. A. Vasil'ev
%T On the Metric Structure of Ultrametric Spaces
%J Informatics and Automation
%D 2004
%P 182-201
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/
%G en
%F TRSPY_2004_245_a18
S. K. Nechaev; O. A. Vasil'ev. On the Metric Structure of Ultrametric Spaces. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 182-201. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/

[1] Rammal R., Toulouse G., Virasoro M. A., “Ultrametricity for physicists”, Rev. Mod. Phys., 58 (1986), 765–788 | DOI | MR

[2] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233 (1993), 1–66 | DOI | MR

[3] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[4] Mezard M., Parisi G., Virasoro M., Spin glass theory and beyond, World Sci., Singapore, 1987 | MR | Zbl

[5] Parisi G., “Infinite number of order parameters for spin-glasses”, Phys. Rev. Lett., 43 (1979), 1754–1756 | DOI | MR

[6] Parisi G., “A sequence of approximated solutions to the S-K model for spin glasses”, J. Phys. A: Math. and Gen., 13 (1980), L115–L121 | DOI

[7] Parisi G., “The order parameter for spin glasses: a function on the interval 0–1”, J. Phys. A: Math. and Gen., 13 (1980), 1101–1112 | DOI

[8] Parisi G., “Magnetic properties of spin glasses in a new mean field theory”, J. Phys. A: Math. and Gen., 13 (1980), 1887–1895 | DOI

[9] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. and Gen., 32 (1999), 8785–8791 | DOI | MR | Zbl

[10] Parisi G., Sourlas N., “$p$-Adic numbers and replica symmetry breaking”, Eur. Phys. J. B., 14 (2000), 535–542 | DOI | MR

[11] Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. and Gen., 35 (2002), 177–189 | DOI | MR | Zbl

[12] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. and Gen., 36 (2003), 4239–4246 | DOI | MR | Zbl

[13] Carlucci D. M., De Dominicis C., “On the replica Fourier transform”, C. R. Acad. Sci. Paris. Ser. IIB: Mech. Phys. Chim. Astr., 325 (1997), 527–530 | Zbl

[14] De Dominicis C., Carlucci D. M., Temesvari T., “Replica Fourier transforms on ultrametric trees, and block-diagonalizing multi-replica matrices”, J. Phys. I (France), 7 (1997), 105–115 | DOI | MR

[15] Terras A., Harmonic analysis on symmetric spaces and applications, 1, Springer, New York, 1985 | MR

[16] Chandrasekharan K., Elliptic functions, Springer, Berlin, 1985 | MR | Zbl

[17] Di Francesco P., Senechal D., Mathieu P., Conformal field theory, Springer, Berlin, 1996

[18] Ogielski A. T., Stein D. L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55 (1985), 1634–1637 | DOI | MR

[19] Bachas C. P., Huberman B. A., “Complexity and ultradiffusion”, J. Phys. A: Math. and Gen., 20 (1987), 4995–5014 | DOI | MR

[20] Magnus W., Noneuclidean tesselations and their groups, Acad. Press, London, 1974 | MR | Zbl

[21] Beardon A. F., The geometry of discrete groups, Springer, Berlin, 1983 | MR | Zbl