On the Metric Structure of Ultrametric Spaces
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 182-201

Voir la notice de l'article provenant de la source Math-Net.Ru

In our work, we reconsider the old problem of diffusion at the boundary of an ultrametric tree from a “number-theoretic” point of view. Namely, we use modular functions (in particular, the Dedekind $\eta$ function) to construct a “continuous” analogue of the Cayley tree isometrically embedded into the Poincaré upper half-plane. Later, we work with this continuous Cayley tree as with a standard function of a complex variable. In the frameworks of our approach, the results of Ogielsky and Stein on the dynamics on ultrametric spaces are reproduced semi-analytically/semi-numerically. Speculation on the new “geometrical” interpretation of the replica $n\to 0$ limit is proposed.
@article{TRSPY_2004_245_a18,
     author = {S. K. Nechaev and O. A. Vasil'ev},
     title = {On the {Metric} {Structure} of {Ultrametric} {Spaces}},
     journal = {Informatics and Automation},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/}
}
TY  - JOUR
AU  - S. K. Nechaev
AU  - O. A. Vasil'ev
TI  - On the Metric Structure of Ultrametric Spaces
JO  - Informatics and Automation
PY  - 2004
SP  - 182
EP  - 201
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/
LA  - en
ID  - TRSPY_2004_245_a18
ER  - 
%0 Journal Article
%A S. K. Nechaev
%A O. A. Vasil'ev
%T On the Metric Structure of Ultrametric Spaces
%J Informatics and Automation
%D 2004
%P 182-201
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/
%G en
%F TRSPY_2004_245_a18
S. K. Nechaev; O. A. Vasil'ev. On the Metric Structure of Ultrametric Spaces. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 182-201. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/