Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_245_a18, author = {S. K. Nechaev and O. A. Vasil'ev}, title = {On the {Metric} {Structure} of {Ultrametric} {Spaces}}, journal = {Informatics and Automation}, pages = {182--201}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/} }
S. K. Nechaev; O. A. Vasil'ev. On the Metric Structure of Ultrametric Spaces. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 182-201. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a18/
[1] Rammal R., Toulouse G., Virasoro M. A., “Ultrametricity for physicists”, Rev. Mod. Phys., 58 (1986), 765–788 | DOI | MR
[2] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233 (1993), 1–66 | DOI | MR
[3] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[4] Mezard M., Parisi G., Virasoro M., Spin glass theory and beyond, World Sci., Singapore, 1987 | MR | Zbl
[5] Parisi G., “Infinite number of order parameters for spin-glasses”, Phys. Rev. Lett., 43 (1979), 1754–1756 | DOI | MR
[6] Parisi G., “A sequence of approximated solutions to the S-K model for spin glasses”, J. Phys. A: Math. and Gen., 13 (1980), L115–L121 | DOI
[7] Parisi G., “The order parameter for spin glasses: a function on the interval 0–1”, J. Phys. A: Math. and Gen., 13 (1980), 1101–1112 | DOI
[8] Parisi G., “Magnetic properties of spin glasses in a new mean field theory”, J. Phys. A: Math. and Gen., 13 (1980), 1887–1895 | DOI
[9] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. and Gen., 32 (1999), 8785–8791 | DOI | MR | Zbl
[10] Parisi G., Sourlas N., “$p$-Adic numbers and replica symmetry breaking”, Eur. Phys. J. B., 14 (2000), 535–542 | DOI | MR
[11] Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A: Math. and Gen., 35 (2002), 177–189 | DOI | MR | Zbl
[12] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A: Math. and Gen., 36 (2003), 4239–4246 | DOI | MR | Zbl
[13] Carlucci D. M., De Dominicis C., “On the replica Fourier transform”, C. R. Acad. Sci. Paris. Ser. IIB: Mech. Phys. Chim. Astr., 325 (1997), 527–530 | Zbl
[14] De Dominicis C., Carlucci D. M., Temesvari T., “Replica Fourier transforms on ultrametric trees, and block-diagonalizing multi-replica matrices”, J. Phys. I (France), 7 (1997), 105–115 | DOI | MR
[15] Terras A., Harmonic analysis on symmetric spaces and applications, 1, Springer, New York, 1985 | MR
[16] Chandrasekharan K., Elliptic functions, Springer, Berlin, 1985 | MR | Zbl
[17] Di Francesco P., Senechal D., Mathieu P., Conformal field theory, Springer, Berlin, 1996
[18] Ogielski A. T., Stein D. L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55 (1985), 1634–1637 | DOI | MR
[19] Bachas C. P., Huberman B. A., “Complexity and ultradiffusion”, J. Phys. A: Math. and Gen., 20 (1987), 4995–5014 | DOI | MR
[20] Magnus W., Noneuclidean tesselations and their groups, Acad. Press, London, 1974 | MR | Zbl
[21] Beardon A. F., The geometry of discrete groups, Springer, Berlin, 1983 | MR | Zbl