Symmetry of the Renormalization Group in $p$-Adic Models
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 172-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bosonic and fermionic fields are considered on a ball in a $d$-dimensional $p$-adic space. These fields are defined by a Hamiltonian whose Gaussian part is invariant with respect to the Wilson renormalization group (RG) $R(\alpha)$ with parameter $\alpha$ and the non-Gaussian part is a formal series of finite-particle Hamiltonians. Let $F$ be a functional map applied only to the non-Gaussian part of $H$. A new symmetry of the renormalization group is defined by the commutator relation $R(\alpha )FH=FR(2d-\alpha )H$. As a consequence of this symmetry, the non-Gaussian branch of the stable points of the RG with $\alpha =d/2$ bifurcates from the fixed point corresponding to a constant (zero) random field.
@article{TRSPY_2004_245_a17,
     author = {M. D. Missarov},
     title = {Symmetry of the {Renormalization} {Group} in $p${-Adic} {Models}},
     journal = {Informatics and Automation},
     pages = {172--181},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/}
}
TY  - JOUR
AU  - M. D. Missarov
TI  - Symmetry of the Renormalization Group in $p$-Adic Models
JO  - Informatics and Automation
PY  - 2004
SP  - 172
EP  - 181
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/
LA  - ru
ID  - TRSPY_2004_245_a17
ER  - 
%0 Journal Article
%A M. D. Missarov
%T Symmetry of the Renormalization Group in $p$-Adic Models
%J Informatics and Automation
%D 2004
%P 172-181
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/
%G ru
%F TRSPY_2004_245_a17
M. D. Missarov. Symmetry of the Renormalization Group in $p$-Adic Models. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 172-181. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/

[1] Vladimirov V. S., Volovich I. V., “Superanaliz. Differentsialnoe ischislenie”, Teor. i mat. fizika, 59 (1984), 3–27 | MR | Zbl

[2] Volovich I. V., “$p$-Adicheskoe prostranstvo-vremya i teoriya strun”, Teor. i mat. fizika, 71 (1987), 337–340 | MR | Zbl

[3] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[4] Lerner E. Yu., Missarov M. D., “Skalyarnye modeli $p$-adicheskoi kvantovoi teorii polya i ierarkhicheskaya model Daisona”, Teor. i mat. fizika, 78 (1989), 248–257 | MR

[5] Missarov M. D., “RG-invariantnye krivye v fermionnoi ierarkhicheskoi modeli”, Teor. i mat. fizika, 114 (1998), 323–336 | MR | Zbl

[6] Missarov M. D., “Kriticheskie yavleniya v fermionnoi ierarkhicheskoi modeli”, Teor. i mat. fizika, 117 (1998), 471–488 | MR | Zbl

[7] Missarov M. D., “Nepreryvnyi predel v fermionnoi ierarkhicheskoi modeli”, Teor. i mat. fizika, 118 (1999), 40–50 | MR | Zbl

[8] Sinai Ya. G., Teoriya fazovykh perekhodov, Nauka, M., 1980 | MR

[9] Bleher P. M., Missarov M. D., “The equations of Wilson's RG and analytic renormalization. I: General results”, Commun. Math. Phys., 74 (1980), 235–254 | DOI | MR

[10] Bleher P. M., Missarov M. D., “The equations of Wilson's RG and analytic renormalization. II: Solution of Wilson's equations”, Commun. Math. Phys., 74 (1980), 255–272 | DOI | MR

[11] Bleher P. M., Sinai Ja. G., “Investigation of the critical point in models of the type of Dyson's hierarchical models”, Commun. Math. Phys., 33 (1973), 23–42 | DOI | MR

[12] Khrennikov A. Yu., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl

[13] Lerner E. Yu., Missarov M. D., “$p$-Adic Feynman and string amplitudes”, Commun. Math. Phys., 121 (1989), 35–48 | DOI | MR | Zbl

[14] Lerner E. Yu., Missarov M. D., “Fixed points of renormalization group in the hierarchical fermionic model”, J. Stat. Phys., 76 (1994), 805–817 | DOI | MR | Zbl

[15] Missarov M. D., “Renormalization group and renormalization theory in $p$-adic and adelic scalar models”, Dynamical systems and statistical mechanics, Adv. Sov. Math., 3, ed. Ya. G. Sinai, Amer. Math. Soc., Providence, RI, 1991, 143–161 | MR

[16] Missarov M. D., “Renormalization group solution of fermionic Dyson model”, Asymptotic combinatorics with application to mathematical physics, eds. V. A. Malyshev, A. M. Vershik, Kluwer, Dordrecht, 2002, 151–166 | MR | Zbl