Symmetry of the Renormalization Group in $p$-Adic Models
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 172-181

Voir la notice de l'article provenant de la source Math-Net.Ru

Bosonic and fermionic fields are considered on a ball in a $d$-dimensional $p$-adic space. These fields are defined by a Hamiltonian whose Gaussian part is invariant with respect to the Wilson renormalization group (RG) $R(\alpha)$ with parameter $\alpha$ and the non-Gaussian part is a formal series of finite-particle Hamiltonians. Let $F$ be a functional map applied only to the non-Gaussian part of $H$. A new symmetry of the renormalization group is defined by the commutator relation $R(\alpha )FH=FR(2d-\alpha )H$. As a consequence of this symmetry, the non-Gaussian branch of the stable points of the RG with $\alpha =d/2$ bifurcates from the fixed point corresponding to a constant (zero) random field.
@article{TRSPY_2004_245_a17,
     author = {M. D. Missarov},
     title = {Symmetry of the {Renormalization} {Group} in $p${-Adic} {Models}},
     journal = {Informatics and Automation},
     pages = {172--181},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/}
}
TY  - JOUR
AU  - M. D. Missarov
TI  - Symmetry of the Renormalization Group in $p$-Adic Models
JO  - Informatics and Automation
PY  - 2004
SP  - 172
EP  - 181
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/
LA  - ru
ID  - TRSPY_2004_245_a17
ER  - 
%0 Journal Article
%A M. D. Missarov
%T Symmetry of the Renormalization Group in $p$-Adic Models
%J Informatics and Automation
%D 2004
%P 172-181
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/
%G ru
%F TRSPY_2004_245_a17
M. D. Missarov. Symmetry of the Renormalization Group in $p$-Adic Models. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 172-181. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a17/