Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2004_245_a16, author = {S. N. Mayburov}, title = {Fuzzy {Geometry} of {Space--Time} and {Quantum} {Dynamics}}, journal = {Informatics and Automation}, pages = {166--171}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a16/} }
S. N. Mayburov. Fuzzy Geometry of Space--Time and Quantum Dynamics. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 166-171. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a16/
[1] Mayburov S., “Fuzzy time-space geometry as approach to quantization”, Reconsideration of Foundations, Proc. Intern. Conf. on Quantum Theory (Växjö, 2001), Växjö Univ. Press, Växjö, 2002, 233–242; arXiv: /hep-th/0210113
[2] Aharonov Y., Kaufherr T., “Quantum frames of reference”, Phys. Rev. D., 30 (1984), 368–385 | DOI | MR
[3] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Commun. Math. Phys., 172 (1995), 187–220 | DOI | MR | Zbl
[4] Isham C. J., “Canonical quantum gravity and the question of time”, Canonical gravity: from classical to quantum, Lect. Notes Phys., 434, eds. J. Ehlers, H. Friedrich, Springer, Berlin, 1994, 150–169 | MR | Zbl
[5] Vladimirov V. S., Volovich I. V., “$p$-Adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl
[6] Zadeh L. A., “Fuzzy sets”, Inform. and Control., 8 (1965), 338–353 | DOI | MR | Zbl
[7] Bandemer H., Gottwald S., Einfuhrung in Fuzzy-Methoden, Akad.-Verl., Berlin, 1993 | MR | Zbl
[8] Zeeman E. C., “The topology of the brain and visual perception”, Topology of 3-manifolds and related topics, Proc. Univ. Georgia Inst., 1961, ed. K. Fort, Prentice-Hall, Englewood Cliffs, NJ, 1962, 240–256 | MR
[9] Dodson C. T. J., “Tangent structure for hazy spaces”, J. London Math. Soc. Ser. 2, 11 (1975), 465–473 | DOI | MR | Zbl
[10] Ali S. T., Emch G. G., “Fuzzy observables in quantum mechanics”, J. Math. Phys., 15 (1974), 176–182 | DOI | MR
[11] Ali S. T., Prugovečki E., “Systems of imprimitivity and representations of quantum mechanics on fuzzy phase spaces”, J. Math. Phys., 18 (1977), 219–228 | DOI | MR | Zbl
[12] Pykacz J., “Lukasiewicz operations in fuzzy set and many-valued representations of quantum logics”, Found. Phys., 30 (2000), 1503–1524 | DOI | MR
[13] Requardt M., Roy S., “(Quantum) spacetime as a statistical geometry of fuzzy lumps and the connection with random metric spaces”, Class. and Quant. Grav., 18 (2001), 3039–3058 ; arXiv: /gr-qc/0011076 | DOI | MR
[14] Schiff L. I., Quantum mechanics, McGraw-Hill, New York, 1955 | Zbl
[15] Berezin F. A., Shubin M. A., Uravnenie Shredingera, MGU, M., 1983 | MR
[16] Feynman R., Hibbs A., Quantum mechanics and path integrals, McGrow-Hill, New York, 1965 | Zbl