Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 146-153
Voir la notice de l'article provenant de la source Math-Net.Ru
We overview the construction of non-Gaussian measures on the space $\mathcal D'(\mathbb Q_p^n)$, $n\le 4$, of Bruhat–Schwartz distributions over the field of $p$-adic numbers, corresponding to finite volume polynomial interactions in a $p$-adic analogue of the Euclidean quantum field theory. Our choice of the free measure is the Gaussian measure corresponding to an elliptic pseudodifferential operator over $\mathbb Q_p^n$. Analogues of the Euclidean $P(\varphi)$-theories with free and half-Dirichlet boundary conditions are considered.
@article{TRSPY_2004_245_a14,
author = {A. N. Kochubei and M. R. Sait-Ametov},
title = {Construction of {Interaction} {Measures} on the {Space} of {Distributions} over the {Field} of $p${-Adic} {Numbers}},
journal = {Informatics and Automation},
pages = {146--153},
publisher = {mathdoc},
volume = {245},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a14/}
}
TY - JOUR AU - A. N. Kochubei AU - M. R. Sait-Ametov TI - Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers JO - Informatics and Automation PY - 2004 SP - 146 EP - 153 VL - 245 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a14/ LA - en ID - TRSPY_2004_245_a14 ER -
%0 Journal Article %A A. N. Kochubei %A M. R. Sait-Ametov %T Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers %J Informatics and Automation %D 2004 %P 146-153 %V 245 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a14/ %G en %F TRSPY_2004_245_a14
A. N. Kochubei; M. R. Sait-Ametov. Construction of Interaction Measures on the Space of Distributions over the Field of $p$-Adic Numbers. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 146-153. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a14/