Representation of Cognitive Information by Probability Distributions on the Space of Neural Trajectories
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 125-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a mental model, a probabilistic neural pathway model, in which mental states are represented by probability distributions on a mental space. Mental spaces are endowed with very special topologies, namely, ultrametric $p$-adic topologies (that differ essentially from the standard Euclidean topology). Such topologies are induced by hierarchic representations of cognitive information. Mental spaces have treelike structures. This hierarchic structure in a mental space is induced by hierarchic neural pathways producing quanta of mental information, mental points. Hierarchic neural pathways are considered as fundamental units of information processing. As neural pathways can go through the whole body, the mental space is produced not only by brain but by the whole neural system. The use of the $p$-adic topology gives a new viewpoint to the problem of localization of psychological functions. We also discuss the role of sensations and emotions in the probabilistic neural pathway model.
@article{TRSPY_2004_245_a13,
     author = {A. Yu. Khrennikov},
     title = {Representation of {Cognitive} {Information} by {Probability} {Distributions} on the {Space} of {Neural} {Trajectories}},
     journal = {Informatics and Automation},
     pages = {125--145},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a13/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Representation of Cognitive Information by Probability Distributions on the Space of Neural Trajectories
JO  - Informatics and Automation
PY  - 2004
SP  - 125
EP  - 145
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a13/
LA  - ru
ID  - TRSPY_2004_245_a13
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Representation of Cognitive Information by Probability Distributions on the Space of Neural Trajectories
%J Informatics and Automation
%D 2004
%P 125-145
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a13/
%G ru
%F TRSPY_2004_245_a13
A. Yu. Khrennikov. Representation of Cognitive Information by Probability Distributions on the Space of Neural Trajectories. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 125-145. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a13/

[1] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[2] Khrennikov A. Yu., “Human subconscious as a $p$-adic dynamical system”, J. Theor. Biology, 193 (1998), 179–196 | DOI

[3] Khrennikov A. Yu., “$p$-Adicheskie dinamicheskie sistemy: opisanie konkurentnoi borby v biologicheskikh populyatsiyakh s ogranichennym rostom”, Dokl. RAN, 361 (1998), 752–754 | MR | Zbl

[4] Albeverio S., Khrennikov A. Yu., Kloeden P., “Memory retrieval as a $p$-adic dynamical system”, Biosystems, 49 (1999), 105–115 | DOI

[5] Khrennikov A. Yu., “Opisanie raboty chelovecheskogo podsoznaniya sredstvami $p$-adicheskikh dinamicheskikh sistem”, Dokl. RAN, 365 (1999), 458–460 | MR | Zbl

[6] Dubischar D., Gundlach V. M., Steinkamp O., Khrennikov A. Yu., “A $p$-adic model for the process of thinking disturbed by physiological and information noise”, J. Theor. Biology, 197 (1999), 451–467 | DOI | MR

[7] Khrennikov A. Yu., “$p$-Adic discrete dynamical systems and collective behaviour of information states in cognitive models”, Discr. Dyn. Nat. and Soc., 5 (2000), 59–69 | DOI

[8] Albeverio S., Khrennikov A. Yu., Tirozzi B., “$p$-Adic dynamical systems and neural networks”, Math. Mod. and Meth. Appl. Sci., 9 (1999), 1417–1437 | DOI | MR | Zbl

[9] Khrennikov A. Yu., “Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena”, Found. Phys., 29 (1999), 1065–1098 | DOI | MR

[10] Khrennikov A. Yu., “Classical and quantum mechanics on $p$-adic trees of ideas”, Biosystems, 56 (2000), 95–120 | DOI

[11] Bohm D., Hiley B., The undivided universe: An ontological interpretation of quantum mechanics, Routledge and Kegan Paul, London, 1993 | MR

[12] Hiley B., Pylkkanen P., “Active information and cognitive science – A reply to Kieseppa”, Brain, mind and physics, eds. P. Pylkkanen, P. Pylkko, A. Hautamaki, IOS Press, Amsterdam, 1997, 64–85

[13] Hiley B., “Non-commutative geometry, the Bohm interpretation and the mind-matter relationship”, Proc. CASYS 2000 (Liege, Belgium, 2000), AIP Conf. Proc., 573, Amer. Inst. Phys., Melville, 2001, 77–88

[14] Ashby R., Design of a brain, Chapman-Hal, London, 1952

[15] van Gelder T., Port R., “It's about time: Overview of the dynamical approach to cognition”, Mind as motion: Explorations in the dynamics of cognition, eds. T. van Gelder, R. Port, MITP, Cambridge, MA, 1995, 1–43

[16] Strogatz S. H., Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering, Addison Wesley, Reading, MA, 1994

[17] Port R., “The dynamical systems hypothesis in cognitive science”, MacMillan encyclopedia of cognitive science, MacMillan, Hampshire, 2003, 203–205

[18] Eliasmith C., “The third contender: A critical examination of the dynamicist theory of cognition”, Phil. Psychology, 9:4 (1996), 441–463 | DOI

[19] van Gelder T., “What might cognition be, if not computation?”, J. Philos., 91 (1995), 345–381

[20] Newell A., Simon H., “Computer science and empirical inquiry”, Commun. ACM, 19:3 (1976), 113–126 | DOI | MR

[21] Chomsky N., “Formal properties of grammars”, Handbook of mathematical psychology, v. 2, eds. R. D. Luce, R. R. Bush, E. Galanter, Wiley, New York, 1963, 323–418

[22] Churchland P. S., Sejnovski T., The computational brain, MITP, Cambridge, MA, 1992

[23] Amit D., Modeling brain function, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[24] Hopfield J. J., “Neural networks and physical systems with emergent collective computational abilities”, Proc. Nat. Acad. Sci. USA, 79 (1982), 1554–2558 | DOI | MR

[25] Bechtel W., Abrahamsen A., Connectionism and the mind, B. Blackwell, Cambridge, 1991

[26] Whitehead A. N., Process and reality: An essay in cosmology, MacMillan Publ., New York, 1929

[27] Damasio A. R., Descartes' error: emotion, reason, and the human brain, Anton Books, New York, 1994

[28] Schikhof W., Ultrametric calculus, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[29] Escassut A., Analytic elements in $p$-adic analysis, World Sci., Singapore, 1995 | MR | Zbl

[30] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[31] Lemin A. J., “The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT$^*$”, Algebra Univers., 50 (2003), 35–49 | DOI | MR | Zbl

[32] Mezard M., Parisi G., Virasoro M., Spin-glass theory and beyond, World Sci., Singapore, 1987 | MR | Zbl

[33] Parisi G., Sourlas N., “$p$-Adic numbers and replica symmetry breaking”, Eur. Phys. J. B., 14 (2000), 535–542 | DOI | MR

[34] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. and Gen., 32:50 (1999), 8785–8791 | DOI | MR | Zbl

[35] Hoppensteadt F. C., An introduction to the mathematics of neurons: modeling in the frequency domain, Cambridge Univ. Press, New York, 1997 | MR | Zbl

[36] Hoppensteadt F. C., Izhikevich E., “Canonical models in mathematical neuroscience”, Documenta Mathematica. J. Dtsch. Math. Verein, 3 (1998), 593–600, Intern. Congr. Math., Extra Volume

[37] Edelman G. M., The remembered present: A biological theory of consciousness, Basic Books, New York, 1989

[38] Damasio H., Damasio A. R., Lesion analysis in neuropsychology, Oxford Univ. Press, New York, 1989

[39] Fuster J. M. D., The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe, Lippincott Williams Wilkins Publ., Philadelphia, 1997

[40] Clark A., Psychological models and neural mechanisms. An examination of reductionism in psychology, Clarendon Press, Oxford, 1980 | Zbl

[41] Khrennikov A. Yu., Interpretations of probability, VSP, Utrecht, 1999 | MR | Zbl

[42] Kolmogoroff A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verl., Berlin, 1933 ; Kolmogorov A. N., Foundations of the theory of probability, Chelsea Publ., New York, 1956 | MR | MR | Zbl

[43] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[44] {Khrennikov A.Yu.}, “Quantum-like formalism for cognitive measurements”, Reconsideration of Foundations, Proc. Intern. Conf. on Quantum Theory (Växjö, 2001), Math. Modelling in Phys., Eng. and Cognitive Sci., 2, Växjö Univ. Press, Växjö, 2002, 197–214

[45] Baars B. J., In the theater of consciousness. The workspace of mind, Oxford Univ. Press, Oxford, 1997

[46] Mori K., “On the relation between physical and psychological time”, Proc. Intern. Conf. Toward a Science of Consciousness (Tucson, Arizona, 2002), Tucson Univ. Press, Tucson, 2002, 102