Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 114-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\mathcal F_{r,p}$, which was designed so as to play a role similar to the ordinary Sobolev space $W_{r,p}$, is introduced as a cornerstone for analyzing nonlinear potential theoretic features of the state space with a measure-symmetric semigroup. The aim of this article is to reveal a sufficient condition for the coincidence of the counterparts of the Sobolev space and to derive the equivalence of the norms associated with those counterparts.
@article{TRSPY_2004_245_a12,
     author = {H. Kaneko},
     title = {Analysis {Based} on the {Dirichlet} {Space} {Theory} on {Some} {Extensions} of~$\mathbb Q_p$},
     journal = {Informatics and Automation},
     pages = {114--124},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/}
}
TY  - JOUR
AU  - H. Kaneko
TI  - Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$
JO  - Informatics and Automation
PY  - 2004
SP  - 114
EP  - 124
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/
LA  - en
ID  - TRSPY_2004_245_a12
ER  - 
%0 Journal Article
%A H. Kaneko
%T Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$
%J Informatics and Automation
%D 2004
%P 114-124
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/
%G en
%F TRSPY_2004_245_a12
H. Kaneko. Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 114-124. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/

[1] Albeverio S., Karwowski W., “Diffusion on $p$-adic numbers”, Gaussian random fields, eds. K. Itô, H. Hida, World Sci., Singapore, 1991, 86–99 | MR | Zbl

[2] Albeverio S., Karwowski W., “A random walk on $p$-adics: the generator and its spectrum”, Stoch. Process. and Appl., 53 (1994), 1–22 | DOI | MR | Zbl

[3] Albeverio S., Karwowski W., Yasuda K., “Trace formula for $p$-adics”, Acta Appl. Math., 71 (2002), 31–48 | DOI | MR | Zbl

[4] Albeverio S., Tirotstsi B., Khrennikov A. Yu., de Shmedt S., “$p$-Adicheskie dinamicheskie sistemy”, Teor. i mat. fizika, 114 (1998), 349–365 | MR | Zbl

[5] Albeverio S., Zhao X., “Measure-valued branching processes associated with random walks on $p$-adics”, Ann. Probab., 28 (2000), 1680–1710 | DOI | MR | Zbl

[6] Fukushima M., Kaneko H., “On $(r,p)$-capacities for general Markov semigroups”, Infinite dimensional analysis and stochastic processes, Proc. USP-meeting at Bielefeld, 1983, Res. Notes Math., 124, ed. S. Albeverio, Pitman, Boston, London, 1985, 41–47 | MR

[7] Fukushima M., “On recurrence criteria in the Dirichlet space theory”, From local times to global geometry, control and physics, ed. K. D. Elworthy, Longman Sci. Tech., Essex, 1984/85, 100–110 | MR

[8] Fukushima M., Oshima Y., Takeda M., Dirichlet forms and symmetric Markov processes, W. de Gruyter, Berlin, 1994 | MR | Zbl

[9] Hirsch F., Song S., “Markov properties of multiparameter processes and capacities”, Probab. Theory and Relat. Fields, 103 (1996), 45–71 | DOI | MR

[10] Kaneko H., “On $(r,p)$-capacities for Markov processes”, Osaka J. Math., 23 (1986), 325–336 | MR | Zbl

[11] Kaneko H., “A class of spatially inhomogeneous Dirichlet spaces on the $p$-adic number field”, Stoch. Process. and Appl., 88 (2000), 161–174 | DOI | MR | Zbl

[12] Kaneko H., “Recurrence and transience criteria for symmetric Hunt processes”, Pot. Anal., 13 (2000), 185–197 | DOI | MR | Zbl

[13] Kaneko H., “Time-inhomogeneous stochastic processes on the $p$-adic number field”, Tohoku Math. J., 55 (2003), 65–87 | DOI | MR | Zbl

[14] Kaneko H., Yasuda K., Capacities associated with Dirichlet space on an infinite extension of a local field, Preprint, Tokyo, 2003 | MR

[15] Kaneko H., Zhao X., “Stochastic processes on $\mathbb{Q}_p$ induced by maps and recurrence criteria”, Forum Math., 16 (2004), 69–95 | DOI | MR | Zbl

[16] Karwowski W., Vilela-Mendes R., “Hierarchical structures and asymmetric stochastic processes on $p$-adics and adeles”, J. Math. Phys., 35 (1994), 4637–4650 | DOI | MR | Zbl

[17] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Math. and Appl., 309, Kluwer, Dordrecht, 1994 | MR | Zbl

[18] Koblitz N., $p$-Adic numbers, $p$-adic analysis and zeta-functions, Springer, New York, 1984 | MR | Zbl

[19] Kochubei A. N., “Parabolicheskie uravneniya nad polem $p$-adicheskikh chisel”, Izv. AN SSSR. Ser. mat., 55:6 (1991), 1312–1330 | MR | Zbl

[20] Kochubei A., “Stochastic integrals and stochastic differential equations over the field of $p$-adic numbers”, Pot. Anal., 6 (1997), 105–125 | DOI | MR | Zbl

[21] Mahler M., $p$-Adic numbers and their functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[22] Ôkura H., “Capacitary inequalities and global properties of symmetric Dirichlet forms”, Dirichlet forms and stochastic processes, Proc. Intern. Conf. (Beijing, 1993), eds. Z. M. Ma et al., W. de Gruyter, Berlin, 1995, 291–304 | MR

[23] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1988), 17–53 | MR | Zbl

[24] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[25] Yasuda K., “Additive processes on local fields”, J. Math. Sci. Univ. Tokyo, 3 (1996), 629–654 | MR | Zbl

[26] Yasuda K., “On infinitely divisible distributions on locally compact Abelian groups”, J. Theoret. Probab., 2 (2000), 635–657 | DOI | MR

[27] Yasuda K., “Extension of measures to infinite dimensional spaces over $p$-adic field”, Osaka J. Math., 37 (2000), 967–985 | MR | Zbl