Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$
Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 114-124

Voir la notice de l'article provenant de la source Math-Net.Ru

The space $\mathcal F_{r,p}$, which was designed so as to play a role similar to the ordinary Sobolev space $W_{r,p}$, is introduced as a cornerstone for analyzing nonlinear potential theoretic features of the state space with a measure-symmetric semigroup. The aim of this article is to reveal a sufficient condition for the coincidence of the counterparts of the Sobolev space and to derive the equivalence of the norms associated with those counterparts.
@article{TRSPY_2004_245_a12,
     author = {H. Kaneko},
     title = {Analysis {Based} on the {Dirichlet} {Space} {Theory} on {Some} {Extensions} of~$\mathbb Q_p$},
     journal = {Informatics and Automation},
     pages = {114--124},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/}
}
TY  - JOUR
AU  - H. Kaneko
TI  - Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$
JO  - Informatics and Automation
PY  - 2004
SP  - 114
EP  - 124
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/
LA  - en
ID  - TRSPY_2004_245_a12
ER  - 
%0 Journal Article
%A H. Kaneko
%T Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$
%J Informatics and Automation
%D 2004
%P 114-124
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/
%G en
%F TRSPY_2004_245_a12
H. Kaneko. Analysis Based on the Dirichlet Space Theory on Some Extensions of~$\mathbb Q_p$. Informatics and Automation, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 114-124. http://geodesic.mathdoc.fr/item/TRSPY_2004_245_a12/