On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 87-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the bifurcations of periodic orbits in two-parameter families of two-dimensional diffeomorphisms close to a diffeomorphism with a uadratic homoclinic tangency of the manifolds of a saddle fixed point of neutral type (with multipliers $\lambda$ and $\gamma$ such that $|\lambda|1$, $|\gamma|>1$, and $\lambda\gamma =1$). In particular, we consider the question of the birth of closed invariant curves from “weak focus” periodic orbits (i.e. those with multipliers $e^{\pm i\psi}$, where $0\psi\pi $). It is shown that the first Lyapunov value of such an orbit is nonzero in general, and its sign coincides with the sign of a “separatrix value” that is a function of the coefficients of a return map near the global piece of the homoclinic orbit.
@article{TRSPY_2004_244_a5,
     author = {S. V. Gonchenko and V. S. Gonchenko},
     title = {On {Bifurcations} of {Birth} of {Closed} {Invariant} {Curves} in the {Case} of {Two-Dimensional} {Diffeomorphisms} with {Homoclinic} {Tangencies}},
     journal = {Informatics and Automation},
     pages = {87--114},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a5/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - V. S. Gonchenko
TI  - On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
JO  - Informatics and Automation
PY  - 2004
SP  - 87
EP  - 114
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a5/
LA  - ru
ID  - TRSPY_2004_244_a5
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A V. S. Gonchenko
%T On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
%J Informatics and Automation
%D 2004
%P 87-114
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a5/
%G ru
%F TRSPY_2004_244_a5
S. V. Gonchenko; V. S. Gonchenko. On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies. Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 87-114. http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a5/

[1] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Mat. sb., 74(116):3 (1967), 378–397 | MR | Zbl

[2] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O modelyakh s negruboi gomoklinicheskoi krivoi Puankare”, DAN SSSR, 320:2 (1991), 269–272 | MR | Zbl

[3] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O modelyakh s negruboi gomoklinicheskoi krivoi Puankare”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1991, 36–61 | MR

[4] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “On models with non-rough Poincare homoclinic curves”, Physica D., 62:1/4 (1993), 1–14 | DOI | MR | Zbl

[5] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi, I, II”, Mat. sb., 88:4 (1972), 475–492 ; 90:1 (1973), 139–157 | MR | Zbl | MR

[6] Gonchenko S. V., “Ob ustoichivykh periodicheskikh dvizheniyakh v sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi”, Mat. zametki, 33:5 (1983), 745–755 | MR | Zbl

[7] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Dinamicheskie yavleniya v mnogomernykh sistemakh s negruboi gomoklinicheskoi krivoi Puankare”, Dokl. RAN, 330:2 (1993), 144–147 | MR | Zbl

[8] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits”, Chaos, 6:1 (1996), 15–31 | DOI | MR | Zbl

[9] Newhouse S. E., “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms”, Publ. Math. IHES, 1979, no. 50, 101–151 | MR

[10] Palis J., Viana M., “High dimension diffeomorphisms displaying infinitely many periodic attractors”, Ann. Math., 140 (1994), 207–250 | DOI | MR | Zbl

[11] Romero N., “Persistence of homoclinic tangencies in higher dimensions”, Ergod. Th. and Dyn. Syst., 15 (1995), 735–757 | MR | Zbl

[12] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O suschestvovanii oblastei Nyukhausa vblizi sistem s negruboi gomoklinicheskoi krivoi Puankare (mnogomernyi sluchai)”, Dokl. RAN, 329:4 (1993), 404–407 | MR | Zbl

[13] Duarte P., Persistent homoclinic tangencies for conservative maps near the identity, Preprint 6/98, Lisbon, 1998, March | MR

[14] Duarte P., Abundance of elliptic isles at conservative bifurcations, Preprint 7/98, Lisbon, 1998, April | MR

[15] Afraimovich V. S., Shilnikov L. P., “Strange attractors and quasiattractors”, Nonlinear dynamics and turbulence, Pitma, Boston, 1982, 336–339 | MR

[16] Shilnikov L. P., “Mathematical problems of nonlinear dynamics: a tutorial”, Intern. J. Bifurcation and Chaos, 7:9 (1997), 1953–2001 | DOI | MR | Zbl

[17] Shilnikov L. P., “Chua's circuit: rigorous results and future problems”, Intern. J. Bifurcation and Chaos, 4:3 (1994), 489–519 | DOI | MR

[18] Lai Y.-C., Grebogi C., Yorke J. A., Kan I., “How often are chaotic saddles nonhyperbolic?”, Nonlinearity, 6:5 (1993), 779–797 | DOI | MR | Zbl

[19] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Mat. sb., 189:2 (1998), 137–160 | MR | Zbl

[20] Turaev D. V., “On dimension of nonlocal bifurcational problems”, Intern. J. Bifurcation and Chaos, 6:5 (1996), 919–948 | DOI | MR | Zbl

[21] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Gomoklinicheskie kasaniya proizvolnogo poryadka v oblastyakh Nyukhausa”, Dinamicheskie sistemy, Tr. Mezhdunar. konf., posv. 90-letiyu L. S. Pontryagina, T. 6, Itogi nauki i tekhniki. Sovr. matematika i ee pril.: Tematich. obzory, 67, VINITI, M., 1999, 69–128 | MR

[22] Gonchenko S. V., Gonchenko V. S., On Andronov–Hopf bifurcations of two-dimensional diffeomorphisms with homoclinic tangencies, Preprint No 556, WIAS, Berlin, 2000 | MR

[23] Gonchenko S. V., Shilnikov L. P., “Invarianty $\Omega$-sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. mat. zhurn., 42:2 (1990), 153–159 | MR | Zbl

[24] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izv. RAN. Ser. mat., 56:6 (1992), 1165–1196

[25] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L. O., Methods of qualitative theory in nonlinear dynamics, Pt. 1, World Sci., Singapore, 1998 | MR | Zbl

[26] Shilnikov L. P., “K voprosu o strukture okrestnosti gomoklinicheskoi truby invariantnogo tora”, DAN SSSR, 180:2 (1968), 286–289

[27] Afraimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa–Smeila”, Tr. Mosk. mat. o-va, 28, 1973, 181–214 | Zbl

[28] Tedeshini-Lalli L., Yorke J. A., “How often do simple dynamical processes have infinitely many coexisting sinks?”, Commun. Math. Phys., 106 (1995), 635–657 | DOI | MR

[29] Gonchenko S. V., Shilnikov L. P., “O dvumernykh analiticheskikh sokhranyayuschikh ploschad diffeomorfizmakh so schetnym mnozhestvom ellipticheskikh ustoichivykh periodicheskikh tochek”, Regulyarnaya i khaoticheskaya dinamika, 2:3/4 (1997), 106–123 | MR | Zbl

[30] Colli E., “Infinitely many coexisting strange attractors”, Ann. Inst. H. Poincare, 15:5 (1998), 539–579 | DOI | MR | Zbl

[31] Biragov V. S., Shilnikov L. P., “O bifurkatsiyakh petli sedlo-fokusa v trekhmernoi konservativnoi dinamicheskoi sisteme”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1989, 25–34 ; Sel. Math. Sov., 11:4 (1992), 333–340 | MR | MR

[32] Biragov V. S., “O bifurkatsiyakh v dvukhparametricheskom semeistve konservativnykh otobrazhenii, blizkikh k otobrazheniyu Eno”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1987, 10–23 ; Sel. Math. Sov., 9 (1990), 273–282 | MR | MR | Zbl

[33] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[34] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 5, VINITI, M., 1986, 5–218 | MR

[35] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer, Berlin, 1995 | MR

[36] Afraimovich V. S., Shilnikov L. P., “Invariantnye tory, ikh razrushenie i stokhastichnost”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1983, 3–26 ; AMS Transl. Ser. 2, 149 (1991), 201–212 | MR | Zbl