Cram\'er Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions
Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 65-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamical system $w'=S(w,z,\varepsilon )$, $z'=z+\varepsilon v(w,z,\varepsilon )$ is considered. It is assumed that slow motions are determined by the vector field $v(w,z,\varepsilon )$ in the Euclidean space and fast motions occur in a neighborhood of a topologically mixing hyperbolic attractor. For the difference between the real and averaged slow motions, the central limit theorem is proved and sharp asymptotics for the probabilities of large deviations (that do not exceed $\varepsilon ^\delta$) are calculated; the exponent $\delta$ depends on the smoothness of the system and approaches zero as the smoothness increases.
@article{TRSPY_2004_244_a4,
     author = {V. I. Bakhtin},
     title = {Cram\'er {Asymptotics} in the {Averaging} {Method} for {Systems} with {Fast} {Hyperbolic} {Motions}},
     journal = {Informatics and Automation},
     pages = {65--86},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a4/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Cram\'er Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions
JO  - Informatics and Automation
PY  - 2004
SP  - 65
EP  - 86
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a4/
LA  - ru
ID  - TRSPY_2004_244_a4
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Cram\'er Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions
%J Informatics and Automation
%D 2004
%P 65-86
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a4/
%G ru
%F TRSPY_2004_244_a4
V. I. Bakhtin. Cram\'er Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motions. Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 65-86. http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a4/

[1] Bakhtin V. I., “Pryamoi metod postroeniya invariantnoi mery na giperbolicheskom attraktore”, Izv. RAN. Ser. mat., 56:5 (1992), 934–957 | MR | Zbl

[2] Bakhtin V. I., “Sluchainye protsessy, porozhdennye giperbolicheskoi posledovatelnostyu otobrazhenii, I, II”, Izv. RAN. Ser. mat., 58:2 (1994), 40–72 ; 3, 184–195 | Zbl | MR | Zbl

[3] Bakhtin V. I., “Bolshie ukloneniya sluchainoi velichiny s konechnym chislom semiinvariantov, znacheniya kotorykh vychisleny priblizhenno”, Teoriya veroyatn. i ee primen., 42:3 (1997), 603–608 | MR | Zbl

[4] Bakhtin V. I., “Kramerovskie asimptotiki v sisteme s medlennymi i markovskimi bystrymi dvizheniyami”, Teoriya veroyatn. i ee primen., 44:1 (1999), 14–33 | MR | Zbl

[5] Bakhtin V. I., “Sloistye funktsii i operator usrednennogo vzveshennogo sdviga dlya vozmuschenii giperbolicheskikh otobrazhenii”, Tr. MIAN, 244, 2004, 35–64 | MR | Zbl

[6] Bouen R. E., Metody simvolicheskoi dinamiki, Sb. statei, Matematika. Novoe v zarubezh. nauke, 13, Mir, M., 1979, 245 pp.

[7] Minasyan V. B., “Printsip usredneniya i teorema o bolshikh ukloneniyakh dlya nekotorogo semeistva rasshirenii $Y$-potoka”, UMN, 35:2 (1980), 215–216 | MR | Zbl

[8] Pesin Ya. B., “Obschaya teoriya gladkikh giperbolicheskikh dinamicheskikh sistem”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 123–173 | MR

[9] Kifer Yu., “Averaging in dynamical systems and large deviations”, Invent. Math., 110:2 (1992), 337–370 | DOI | MR | Zbl