On Absolutely Continuous Invariant Measures of Noncontracting Transformations of a Circle
Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A result reported earlier by the authors is described in detail. An existence condition is obtained for an absolutely continuous invariant measure for (locally) noncontracting mappings of an interval and a circle. This condition does not require the monotonicity of the derivative of the mappings in neighborhoods of their nonhyperbolic fixed points. It is proved that a noncontracting $\mathrm C^2$ mapping $f$ of a circle into itself which is nonflat at the points where $f'=1$ admits an absolutely continuous infinite invariant measure. It is shown that the constraint on the class of smoothness cannot be weakened.
@article{TRSPY_2004_244_a2,
     author = {Sh. I. Akhalaya and A. M. Stepin},
     title = {On {Absolutely} {Continuous} {Invariant} {Measures} of {Noncontracting} {Transformations} of a {Circle}},
     journal = {Informatics and Automation},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a2/}
}
TY  - JOUR
AU  - Sh. I. Akhalaya
AU  - A. M. Stepin
TI  - On Absolutely Continuous Invariant Measures of Noncontracting Transformations of a Circle
JO  - Informatics and Automation
PY  - 2004
SP  - 23
EP  - 34
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a2/
LA  - ru
ID  - TRSPY_2004_244_a2
ER  - 
%0 Journal Article
%A Sh. I. Akhalaya
%A A. M. Stepin
%T On Absolutely Continuous Invariant Measures of Noncontracting Transformations of a Circle
%J Informatics and Automation
%D 2004
%P 23-34
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a2/
%G ru
%F TRSPY_2004_244_a2
Sh. I. Akhalaya; A. M. Stepin. On Absolutely Continuous Invariant Measures of Noncontracting Transformations of a Circle. Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 23-34. http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a2/

[1] Lasota A., Yorke J. A., “On the existence of invariant measures of piecewise monotonic transformations”, Trans. Amer. Math. Soc., 186 (1973), 481–488 | DOI | MR

[2] Adler R. L., “$F$-expansions revisited”, Lect. Notes Math., 318, 1973, 1–5 | MR | Zbl

[3] Akhalaya Sh. I., Stepin A. M., “Ob invariantnykh merakh neszhimayuschikh otobrazhenii”, Soobsch. AN GSSR, 100:3 (1980), 549–552 | MR | Zbl

[4] Bowen R., “Invariant measures for Markov maps of interval”, Commun. Math. Phys., 69 (1979), 1–17 | DOI | MR | Zbl

[5] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR

[6] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[7] Renyi A., “Representations for real numbers and their ergodic properties”, Acta Math. Acad. Sci. Hung., 8 (1957), 477–493 | DOI | MR | Zbl

[8] Thaler M., “Estimates of the invariant densities of endomorphisms with indifferent fixed points”, Israel J. Math., 37 (1980), 303–314 | DOI | MR | Zbl

[9] Thaler M., “Transformations on $[0,1]$ with infinite invariant measures”, Israel J. Math., 46 (1983), 67–96 | DOI | MR | Zbl