Minimal Sets in Almost Equicontinuous Systems
Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 297-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

Supplying necessary and sufficient conditions such that a transitive system (as a subsystem of the Bebutov system) is uniformly rigid and using the fact that each transitive uniformly rigid system has an almost equicontinuous extension, we construct almost equicontinuous systems containing $n$ ($n\in\mathbb N$), countably many, and uncountably many minimal sets, which serve as new examples of almost equicontinuous systems. Our method is quite general as each transitive uniformly rigid system has a factor that is a subsystem of the Bebutov system. Moreover, we explore how the number of connected components in a transitive pointwise recurrent system is related to the connectedness of the minimal sets contained in the system.
@article{TRSPY_2004_244_a11,
     author = {W. Huang and Xiangdong Ye},
     title = {Minimal {Sets} in {Almost} {Equicontinuous} {Systems}},
     journal = {Informatics and Automation},
     pages = {297--304},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a11/}
}
TY  - JOUR
AU  - W. Huang
AU  - Xiangdong Ye
TI  - Minimal Sets in Almost Equicontinuous Systems
JO  - Informatics and Automation
PY  - 2004
SP  - 297
EP  - 304
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a11/
LA  - en
ID  - TRSPY_2004_244_a11
ER  - 
%0 Journal Article
%A W. Huang
%A Xiangdong Ye
%T Minimal Sets in Almost Equicontinuous Systems
%J Informatics and Automation
%D 2004
%P 297-304
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a11/
%G en
%F TRSPY_2004_244_a11
W. Huang; Xiangdong Ye. Minimal Sets in Almost Equicontinuous Systems. Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 297-304. http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a11/

[1] Akin E., Auslander J., Berg K., “When is a transitive map chaotic?”, Convergence in ergodic theory and probability, Ohio State Univ. Math. Res. Inst. Publ., 5, W. de Gruyter, Berlin, 1996, 25–40 | MR | Zbl

[2] Akin E., Auslander J., Berg K., “Almost equicontinuity and the enveloping semigroup”, Contemp. Math., 215 (1998), 75–81 | MR | Zbl

[3] Akin E., Glasner E., “Residual properties and almost equicontinuity”, J. Anal. Math., 84 (2001), 243–286 | DOI | MR | Zbl

[4] Blanchard F., Host B., Maass A., “Topological complexity”, Ergod. Th. and Dyn. Syst., 20 (2000), 641–662 | DOI | MR | Zbl

[5] Downarowicz T., “Weakly almost periodic flows and hidden eigenvalues”, Contemp. Math., 215 (1998), 101–120 | MR | Zbl

[6] Ellis R., Nerurkar M., “Weakly almost periodic flows”, Trans. Amer. Math. Soc., 313 (1989), 103–119 | DOI | MR | Zbl

[7] Glasner E., Maon D., “Rigidity in topological dynamics”, Ergod. Th. and Dyn. Syst., 9 (1989), 309–320 | MR | Zbl

[8] Glasner E., Weiss B., “Sensitive dependence on initial conditions”, Nonlinearity, 6 (1993), 1067–1075 | DOI | MR | Zbl

[9] Glasner E., Weiss B., “Locally equicontinuous dynamical systems”, Colloq. Math., 84 (2000), 345–361 | MR | Zbl

[10] Katznelson Y., Weiss B., “When all points are recurrent/generic”, Ergodic theory and dynamical systems, I, Progr. Math., 10, Birkhäuser, Boston, 1981, 195–210 | MR