Difference Equations and Dynamical Systems Generated by Certain Classes of Boundary Value Problems
Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 281-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special class of evolution semigroups is considered. The study of these semigroups can be reduced to the analysis of the dynamical properties of maps with one- or two-dimensional phase space. The structure of attractors and the entropy properties of appropriate infinite-dimensional dynamical systems are described.
@article{TRSPY_2004_244_a10,
     author = {A. N. Sharkovskii and E. Yu. Romanenko},
     title = {Difference {Equations} and {Dynamical} {Systems} {Generated} by {Certain} {Classes} of {Boundary} {Value} {Problems}},
     journal = {Informatics and Automation},
     pages = {281--296},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a10/}
}
TY  - JOUR
AU  - A. N. Sharkovskii
AU  - E. Yu. Romanenko
TI  - Difference Equations and Dynamical Systems Generated by Certain Classes of Boundary Value Problems
JO  - Informatics and Automation
PY  - 2004
SP  - 281
EP  - 296
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a10/
LA  - ru
ID  - TRSPY_2004_244_a10
ER  - 
%0 Journal Article
%A A. N. Sharkovskii
%A E. Yu. Romanenko
%T Difference Equations and Dynamical Systems Generated by Certain Classes of Boundary Value Problems
%J Informatics and Automation
%D 2004
%P 281-296
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a10/
%G ru
%F TRSPY_2004_244_a10
A. N. Sharkovskii; E. Yu. Romanenko. Difference Equations and Dynamical Systems Generated by Certain Classes of Boundary Value Problems. Informatics and Automation, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 281-296. http://geodesic.mathdoc.fr/item/TRSPY_2004_244_a10/

[1] Iwanik A., “Independent sets of transitive points”, Dynamical systems and ergodic theory, Banach Center Publ., 23, Pol. Sci. Publ., Warszawa, 1989, 277–282 | MR | Zbl

[2] Milnor J., “On the concept of attractor”, Commun. Math. Phys., 99 (1985), 177–195 | DOI | MR | Zbl

[3] Romanenko E. Yu., “On chaos in continuous difference equations”, Dynamical systems and applications, World Sci. Ser. Appl. Anal., 4, World Sci., Singapore, 1995, 617–630 | MR | Zbl

[4] Romanenko E. Yu., “On attractors of continuous difference equations”, Comput. Math. Appl., 36:10/12 (1999), 377–390 | DOI | MR

[5] Romanenko E. Yu., Sharkovskii A. N., “Ot odnomernykh k beskonechnomernym dinamicheskim sistemam: idealnaya turbulentnost”, (na ukr. yaz.), Ukr. mat. zhurn., 48:12 (1996), 1604–1627 | MR | Zbl

[6] Romanenko E. Yu., Sharkovskii A. N., “Dinamika reshenii prosteishikh nelineinykh kraevykh zadach”, Ukr. mat. zhurn., 51:6 (1999), 810–826 | MR | Zbl

[7] Romanenko E. Yu., Sharkovsky A. N., “From boundary value problems to difference equations: A method of investigation of chaotic vibrations”, Intern. J. Bifurcation and Chaos, 9:7 (1999), 1285–1306 | DOI | MR | Zbl

[8] Romanenko E. Yu., Sharkovsky A. N., Vereikina M. B., “Self-structuring and self-similarity in boundary value problems”, Intern. J. Bifurcation and Chaos, 5:5 (1995), 1407–1418 | DOI | MR | Zbl

[9] Romanenko E. Yu., Sharkovsky A. N., Vereikina M. B., “Structural turbulence in boundary value problems”, Control of oscillations and chaos, St. Petersburg, 1997, 492–497

[10] Romanenko E. Yu., Sharkovsky A. N., Vereikina M. B., “Self-structuring and self-stochasticity in difference equations and some boundary value problems”, Self-similar systems, Proc. workshop, JINR, Dubna, 1999., 237–250 | MR

[11] Sharkovsky A. N., “Ideal turbulence in an idealized time-delayed Chua's circuit”, Intern. J. Bifurcation and Chaos, 4:2 (1994), 303–309 | DOI | MR | Zbl

[12] Sharkovsky A. N., “Universal phenomena in some infinite-dimensional dynamical systems”, Intern. J. Bifurcation and Chaos, 5:5 (1995), 1419–1425 | DOI | MR | Zbl

[13] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Nauk. dumka, Kiev, 1989, 216 pp. ; Sharkovsky A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dynamics of one-dimensional mappings, Math. and Appl., 407, Kluwer Acad. Publ., Dordrecht, 1997, 262 pp. | MR | MR | Zbl

[14] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Nauk. dumka, Kiev, 1986, 280 pp. ; Sharkovsky A. N., Maistrenko Yu. L., Romanenko E. Yu., Difference equations and their applications, Math. and Appl., 250, Kluwer Acad. Publ., Dordrecht, 1993, 358 pp. | MR | MR

[15] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., “Asimptoticheskaya periodichnost reshenii raznostnykh uravnenii s nepreryvnym vremenem”, Ukr. mat. zhurn., 39:1 (1987), 123–129 | MR

[16] Sharkovsky A. N., Romanenko E. Yu., “Ideal turbulence: Attractors of deterministic systems may lie in the space of random fields”, Intern. J. Bifurcation and Chaos, 2:1 (1992), 31–36 | DOI | MR | Zbl

[17] Sharkovskii A. N., Romanenko E. Yu., “Avtostokhastichnost: attraktory determinirovannykh zadach mogut soderzhat sluchainye funktsii”, (na ukr. yaz.), Dop. NAN Ukr., 1992, no. 10, 33–37 | MR

[18] Sharkovsky A. N., Sivak A. G., “Universal phenomena in solution bifurcations of some boundary value problems”, J. Nonlin. Math. Phys., 1:2 (1994), 147–157 | DOI | MR | Zbl

[19] Fedorenko V. V., “Topologicheskii predel traektorii intervala prosteishikh odnomernykh dinamicheskikh sistem”, Ukr. mat. zhurn., 54:3 (2002), 425–430 | MR | Zbl