On Sharp Constants in Inequalities for the Modulus of a~Derivative
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 104-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every $1\le r\le\infty$, we solve a Kolmogorov-type problem of describing all triples of numbers $\mu _0,\mu _1,\mu _2\ge 0$ for which there exists a function $f$ with an absolutely continuous derivative on the interval $[0,1]$ such that $\|f\|_{L_\infty (0,1)}=\mu _0$, $|f'(x)|=\mu _1$, and $\|f''\|_{L_r(0,1)}=\mu _2$, where $x$ is a fixed point in the interval $[0,1]$.
@article{TRSPY_2003_243_a9,
     author = {V. I. Burenkov and V. A. Gusakov},
     title = {On {Sharp} {Constants} in {Inequalities} for the {Modulus} of {a~Derivative}},
     journal = {Informatics and Automation},
     pages = {104--126},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - V. A. Gusakov
TI  - On Sharp Constants in Inequalities for the Modulus of a~Derivative
JO  - Informatics and Automation
PY  - 2003
SP  - 104
EP  - 126
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/
LA  - ru
ID  - TRSPY_2003_243_a9
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A V. A. Gusakov
%T On Sharp Constants in Inequalities for the Modulus of a~Derivative
%J Informatics and Automation
%D 2003
%P 104-126
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/
%G ru
%F TRSPY_2003_243_a9
V. I. Burenkov; V. A. Gusakov. On Sharp Constants in Inequalities for the Modulus of a~Derivative. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 104-126. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/

[1] Landau E., “Einige Ungleichungen für zweimal differentierbare Funktionen”, Proc. London Math. Soc., 13 (1913), 43–49 | DOI | Zbl

[2] Hadamard J., “Sur le module maximum d'une fonction et des ses dérivées”, C. R. Acad. Sci. Paris, 41 (1914), 68–72

[3] Tikhomirov V. M., “Nekotorye voprosy teorii priblizhenii”, DAN SSSR, 160:4 (1965), 774–777 | Zbl

[4] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976, 304 pp. | MR

[5] Karlin S., “Oscillatory perfect splines and related extremal problems”, Studies in spline functions and approximation theory, Acad. Press, New York, 1976, 371–460 | MR

[6] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Tr. MIAN, 156, 1980, 22–29 | MR | Zbl

[7] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale, II”, Tr. MIAN, 173, 1986, 38–49 | MR | Zbl

[8] Zvyagintsev A. I., Lepin A. Ya., “O neravenstvakh Kolmogorova mezhdu verkhnimi granyami proizvodnykh funktsii dlya $n=3$”, Latv. mat. ezhegodnik, no. 26, 1982, 176–181 | MR | Zbl

[9] Sato M., “The Landau inequality for bounded intervals with $\|f^{(3)}\|$ finite”, J. Approx. Theory, 34:2 (1982), 159–166 | DOI | MR | Zbl

[10] Zvyagintsev A. I., “Nekotorye otsenki dlya norm funktsii i proizvodnykh na konechnom intervale”, Latv. mat. ezhegodnik, no. 29, 1985, 198–210 | MR | Zbl

[11] Kallioniemi H., “The Landau problem on compact intervals and optimal numerical differentiation”, J. Approx. Theory, 63:1 (1990), 72–91 | DOI | MR | Zbl

[12] Shadrin A. Yu., “O tochnykh postoyannykh v neravenstvakh mezhdu $L_\infty$-normami proizvodnykh na konechnom otrezke”, Dokl. RAN, 326:1 (1992), 50–53 | MR | Zbl

[13] Arestov V. V., “O tochnykh neravenstvakh mezhdu normami funktsii i ikh proizvodnykh”, Acta Sci. Math., 33:3/4 (1972), 243–267 | MR | Zbl

[14] Magaril-Ilyaev G. G., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Mat. sb., 188:12 (1997), 73–106 | MR

[15] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000; 2-е изд., 2003, 176 с.

[16] Barza S., Burenkov V., Pečarić J., Persson L.-E., Sharp multidimensional multiplicative inequalities for weighted $L_p$ spaces with homogeneous weights, Res. rept. 1997-11, Dept. Math. LuleåUniv., 1997, 18 pp.

[17] Burenkov V. I., Gusakov V. A., “O tochnykh postoyannykh v neravenstve dlya modulya proizvodnoi i o nailuchshikh priblizheniyakh funktsionala differentsirovaniya v tochke otrezka”, Dokl. RAN, 356:3 (1997), 295–296 | MR | Zbl