On Sharp Constants in Inequalities for the Modulus of a~Derivative
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 104-126

Voir la notice de l'article provenant de la source Math-Net.Ru

For every $1\le r\le\infty$, we solve a Kolmogorov-type problem of describing all triples of numbers $\mu _0,\mu _1,\mu _2\ge 0$ for which there exists a function $f$ with an absolutely continuous derivative on the interval $[0,1]$ such that $\|f\|_{L_\infty (0,1)}=\mu _0$, $|f'(x)|=\mu _1$, and $\|f''\|_{L_r(0,1)}=\mu _2$, where $x$ is a fixed point in the interval $[0,1]$.
@article{TRSPY_2003_243_a9,
     author = {V. I. Burenkov and V. A. Gusakov},
     title = {On {Sharp} {Constants} in {Inequalities} for the {Modulus} of {a~Derivative}},
     journal = {Informatics and Automation},
     pages = {104--126},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - V. A. Gusakov
TI  - On Sharp Constants in Inequalities for the Modulus of a~Derivative
JO  - Informatics and Automation
PY  - 2003
SP  - 104
EP  - 126
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/
LA  - ru
ID  - TRSPY_2003_243_a9
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A V. A. Gusakov
%T On Sharp Constants in Inequalities for the Modulus of a~Derivative
%J Informatics and Automation
%D 2003
%P 104-126
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/
%G ru
%F TRSPY_2003_243_a9
V. I. Burenkov; V. A. Gusakov. On Sharp Constants in Inequalities for the Modulus of a~Derivative. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 104-126. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a9/