Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multiplicative inequalities are established for functions from the Hardy space $H^1$; based on these inequalities, lower estimates are found for the $L_1$-norm of a general exponential sum. Estimates for the $L_1$-norm of quadratic sums and sums with a power-law spectrum $\{n^h\}$, $h\ge 3$, are derived under certain conditions imposed on the absolute values of the coefficients in the sums. The estimates are sharp for $h\ge 3$.
@article{TRSPY_2003_243_a8,
     author = {S. V. Bochkarev},
     title = {Multiplicative {Inequalities} for {Functions} from the {Hardy} {Space~}$H^1$ and {Their} {Application} to the {Estimation} of {Exponential} {Sums}},
     journal = {Informatics and Automation},
     pages = {96--103},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums
JO  - Informatics and Automation
PY  - 2003
SP  - 96
EP  - 103
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/
LA  - ru
ID  - TRSPY_2003_243_a8
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums
%J Informatics and Automation
%D 2003
%P 96-103
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/
%G ru
%F TRSPY_2003_243_a8
S. V. Bochkarev. Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 96-103. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/

[1] Bochkarev S. V., “Ob absolyutnoi skhodimosti ryadov Fure po ogranichennym polnym ortonormirovannym sistemam funktsii”, Mat. sb., 93:2 (1974), 203–217 | Zbl

[2] Bochkarev S. V., “Logarifmicheskii rost srednikh arifmeticheskikh funktsii Lebega ogranichennykh ortonormirovannykh sistem”, DAN SSSR, 223:1 (1975), 16–19 | MR | Zbl

[3] Bochkarev S. V., Metod usrednenii v teorii ortogonalnykh ryadov i nekotorye voprosy teorii bazisov, Tr. MIAN, 146, Nauka, M., 1978 | MR | Zbl

[4] Bochkarev S. V., “Ryady Valle Pussena v prostranstvakh $\mathrm{BMO}$, $L_1$ i $H^1(D)$ i multiplikativnye neravenstva”, Tr. MIAN, 210, 1995, 41–64 | MR | Zbl

[5] Bochkarev S. V., “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Tr. MIAN, 164, 1983, 49–74 | MR | Zbl

[6] Bochkarev S. V., “Metod otsenki $L_1$-normy eksponentsialnoi summy na osnove arifmeticheskikh svoistv spektra”, Tr. MIAN, 232, 2001, 94–101 | MR | Zbl

[7] Bochkarev S. V., “Novyi metod otsenki integralnoi normy eksponentsialnykh summ, prilozhenie k kvadratichnym summam”, Dokl. RAN, 386:2 (2002), 156–159 | MR

[8] Bochkarev S. V., “Multiplikativnye otsenki $L_1$-normy eksponentsialnykh summ”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, AFTs, M., 1999, 57–68 | MR

[9] Rudin W., “Trigonometric series with gaps”, J. Math. Mech., 9:2 (1960), 203–228 | MR

[10] Edvards R., Ryady Fure v sovremennom izlozhenii, T. 2, Mir, M., 1985

[11] Hooley C., “On the representation of a number as the sum of two cubes”, Math. Ztschr., 82 (1963), 259–266 | DOI | MR | Zbl

[12] Hooley C., “On the representation of a number as the sum of two $h$-th powers”, Math. Ztschr., 84 (1964), 126–136 | DOI | MR | Zbl

[13] Hooley C., “On another sieve method and the numbers that are a sum of two $h$-th powers”, Proc. London Math. Soc., 43:1 (1981), 73–109 | DOI | MR | Zbl