Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 96-103

Voir la notice de l'article provenant de la source Math-Net.Ru

Multiplicative inequalities are established for functions from the Hardy space $H^1$; based on these inequalities, lower estimates are found for the $L_1$-norm of a general exponential sum. Estimates for the $L_1$-norm of quadratic sums and sums with a power-law spectrum $\{n^h\}$, $h\ge 3$, are derived under certain conditions imposed on the absolute values of the coefficients in the sums. The estimates are sharp for $h\ge 3$.
@article{TRSPY_2003_243_a8,
     author = {S. V. Bochkarev},
     title = {Multiplicative {Inequalities} for {Functions} from the {Hardy} {Space~}$H^1$ and {Their} {Application} to the {Estimation} of {Exponential} {Sums}},
     journal = {Informatics and Automation},
     pages = {96--103},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums
JO  - Informatics and Automation
PY  - 2003
SP  - 96
EP  - 103
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/
LA  - ru
ID  - TRSPY_2003_243_a8
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums
%J Informatics and Automation
%D 2003
%P 96-103
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/
%G ru
%F TRSPY_2003_243_a8
S. V. Bochkarev. Multiplicative Inequalities for Functions from the Hardy Space~$H^1$ and Their Application to the Estimation of Exponential Sums. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 96-103. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a8/