Equivalent Normings of Spaces of Functions of Variable Smoothness
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 87-95

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Banach spaces $B_{p,q}^a$ and $F_{p,q}^a$ of functions defined on $\mathbb R^n$ whose variable smoothness $a=a(x)$ is determined by the behavior of their differences, equivalent normings are established in terms of weighted norms of smooth dyadic decompositions of their Fourier transforms.
@article{TRSPY_2003_243_a7,
     author = {O. V. Besov},
     title = {Equivalent {Normings} of {Spaces} of {Functions} of {Variable} {Smoothness}},
     journal = {Informatics and Automation},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a7/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Equivalent Normings of Spaces of Functions of Variable Smoothness
JO  - Informatics and Automation
PY  - 2003
SP  - 87
EP  - 95
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a7/
LA  - ru
ID  - TRSPY_2003_243_a7
ER  - 
%0 Journal Article
%A O. V. Besov
%T Equivalent Normings of Spaces of Functions of Variable Smoothness
%J Informatics and Automation
%D 2003
%P 87-95
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a7/
%G ru
%F TRSPY_2003_243_a7
O. V. Besov. Equivalent Normings of Spaces of Functions of Variable Smoothness. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 87-95. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a7/