On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 66-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system $u_t-\mathcal L_1u\ge b_1(t,x)u^Pv^Q$, $v_t-\mathcal L_2v\ge b_2(t,x)u^Rv^S$, the nonexistence of nontrivial global nonnegative weak solutions in $\mathbb R^{N+1}_+$ is proved under the most general conditions imposed on the nonnegative parameters $P$, $Q$, $R$, and $S$ and on the behavior of the positive functions $b_1$ and $b_2$, as well as for the initial data that sufficiently slowly decrease at infinity. The second-order linear differential operators $\mathcal L_1$ and $\mathcal L_2$ in the above system are of the form $\mathcal L_k=\mathrm {div}[A_k(t,x)\nabla u]$, $k=1,2$, where $A_k$ are measurable matrices such that the corresponding quadratic forms $(A_1\cdot,\cdot )$ and $(A_2\cdot,\cdot )$ are positive semidefinite for all $t$ and $x$. An important feature of such systems with mixed right-hand sides (as compared with the diagonal systems that have been investigated much better) is that the critical exponents essentially depend on whether or not these quadratic forms are equivalent.
@article{TRSPY_2003_243_a6,
     author = {K. O. Besov},
     title = {On the {Global} {Solvability} of {Semilinear} {Parabolic} {Systems} with {Mixed} {Right-Hand} {Side}},
     journal = {Informatics and Automation},
     pages = {66--86},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side
JO  - Informatics and Automation
PY  - 2003
SP  - 66
EP  - 86
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/
LA  - ru
ID  - TRSPY_2003_243_a6
ER  - 
%0 Journal Article
%A K. O. Besov
%T On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side
%J Informatics and Automation
%D 2003
%P 66-86
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/
%G ru
%F TRSPY_2003_243_a6
K. O. Besov. On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 66-86. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/

[1] Bidaut-Véron M.-F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl

[2] Caristi G., “Existence and nonexistence of global solutions of degenerate and singular parabolic systems”, Abstr. Appl. Anal., 5:4 (2000), 265–284 | DOI | MR

[3] Deng K., Levine H. A., “The role of critical exponents in blow-up theorems: The sequel”, J. Math. Anal. and Appl., 243 (2000), 85–126 | DOI | MR | Zbl

[4] Escobedo M., Herrero M. A., “Boundedness and blowup for a semilinear reaction-diffusion system”, J. Diff. Equat., 89 (1991), 176–202 | DOI | MR | Zbl

[5] Escobedo M., Levine H. A., “Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations”, Arch. Rat. Mech. Anal., 129 (1995), 47–100 | DOI | MR | Zbl

[6] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u +u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo. Sect. IA., 13 (1966), 109–124 | MR | Zbl

[7] Levine H. A., “A Fujita type global existence–global nonexistence theorem for a weakly coupled system of reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 42 (1991), 408–430 | DOI | MR | Zbl

[8] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR

[9] Mochizuki K., Huang Q., “Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations”, Meth. Appl. Math., 5 (1998), 109–124 | MR | Zbl

[10] Uda Y., “The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 46 (1995), 366–383 | DOI | MR | Zbl