On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 66-86

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system $u_t-\mathcal L_1u\ge b_1(t,x)u^Pv^Q$, $v_t-\mathcal L_2v\ge b_2(t,x)u^Rv^S$, the nonexistence of nontrivial global nonnegative weak solutions in $\mathbb R^{N+1}_+$ is proved under the most general conditions imposed on the nonnegative parameters $P$, $Q$, $R$, and $S$ and on the behavior of the positive functions $b_1$ and $b_2$, as well as for the initial data that sufficiently slowly decrease at infinity. The second-order linear differential operators $\mathcal L_1$ and $\mathcal L_2$ in the above system are of the form $\mathcal L_k=\mathrm {div}[A_k(t,x)\nabla u]$, $k=1,2$, where $A_k$ are measurable matrices such that the corresponding quadratic forms $(A_1\cdot,\cdot )$ and $(A_2\cdot,\cdot )$ are positive semidefinite for all $t$ and $x$. An important feature of such systems with mixed right-hand sides (as compared with the diagonal systems that have been investigated much better) is that the critical exponents essentially depend on whether or not these quadratic forms are equivalent.
@article{TRSPY_2003_243_a6,
     author = {K. O. Besov},
     title = {On the {Global} {Solvability} of {Semilinear} {Parabolic} {Systems} with {Mixed} {Right-Hand} {Side}},
     journal = {Informatics and Automation},
     pages = {66--86},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side
JO  - Informatics and Automation
PY  - 2003
SP  - 66
EP  - 86
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/
LA  - ru
ID  - TRSPY_2003_243_a6
ER  - 
%0 Journal Article
%A K. O. Besov
%T On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side
%J Informatics and Automation
%D 2003
%P 66-86
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/
%G ru
%F TRSPY_2003_243_a6
K. O. Besov. On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 66-86. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/