Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_243_a6, author = {K. O. Besov}, title = {On the {Global} {Solvability} of {Semilinear} {Parabolic} {Systems} with {Mixed} {Right-Hand} {Side}}, journal = {Informatics and Automation}, pages = {66--86}, publisher = {mathdoc}, volume = {243}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/} }
K. O. Besov. On the Global Solvability of Semilinear Parabolic Systems with Mixed Right-Hand Side. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 66-86. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a6/
[1] Bidaut-Véron M.-F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl
[2] Caristi G., “Existence and nonexistence of global solutions of degenerate and singular parabolic systems”, Abstr. Appl. Anal., 5:4 (2000), 265–284 | DOI | MR
[3] Deng K., Levine H. A., “The role of critical exponents in blow-up theorems: The sequel”, J. Math. Anal. and Appl., 243 (2000), 85–126 | DOI | MR | Zbl
[4] Escobedo M., Herrero M. A., “Boundedness and blowup for a semilinear reaction-diffusion system”, J. Diff. Equat., 89 (1991), 176–202 | DOI | MR | Zbl
[5] Escobedo M., Levine H. A., “Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations”, Arch. Rat. Mech. Anal., 129 (1995), 47–100 | DOI | MR | Zbl
[6] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u +u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo. Sect. IA., 13 (1966), 109–124 | MR | Zbl
[7] Levine H. A., “A Fujita type global existence–global nonexistence theorem for a weakly coupled system of reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 42 (1991), 408–430 | DOI | MR | Zbl
[8] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR
[9] Mochizuki K., Huang Q., “Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations”, Meth. Appl. Math., 5 (1998), 109–124 | MR | Zbl
[10] Uda Y., “The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 46 (1995), 366–383 | DOI | MR | Zbl