Positive Values of Harmonic Polynomials
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, among all second-order spherical harmonics $Y_2$, the quantity $\mathrm {meas}\{x\in S^2\colon Y_2(x)\ge 0\}$ attains its minimal value at a zonal polynomial. For harmonics of higher even orders, the situation is different. Several examples are considered.
@article{TRSPY_2003_243_a4,
     author = {N. N. Andreev and V. A. Yudin},
     title = {Positive {Values} of {Harmonic} {Polynomials}},
     journal = {Informatics and Automation},
     pages = {46--52},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a4/}
}
TY  - JOUR
AU  - N. N. Andreev
AU  - V. A. Yudin
TI  - Positive Values of Harmonic Polynomials
JO  - Informatics and Automation
PY  - 2003
SP  - 46
EP  - 52
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a4/
LA  - ru
ID  - TRSPY_2003_243_a4
ER  - 
%0 Journal Article
%A N. N. Andreev
%A V. A. Yudin
%T Positive Values of Harmonic Polynomials
%J Informatics and Automation
%D 2003
%P 46-52
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a4/
%G ru
%F TRSPY_2003_243_a4
N. N. Andreev; V. A. Yudin. Positive Values of Harmonic Polynomials. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 46-52. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a4/

[1] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[2] Armitage D. H., Gardiner S. J., “Best one-sided $L^1$-approximation by harmonic and subharmonic functions”, Advances in multivariate approximation, Proc. 3rd Intern. Conf. (Witten-Bommerholz, Germany, 1998), Math. Res., 107, eds. W. Haussmann, K. Jetter, M. Reimer, Wiley-VCH, Berlin, 1999, 43–56 | MR | Zbl

[3] Gobson E. V., Teoriya sfericheskikh i ellipsoidalnykh funktsii, Izd-vo inostr. lit., M., 1952