On the Boundedness of Singular Integral Operators.~I
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 17-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundedness of anisotropic singular integral operators with the domains of definition and ranges in various anisotropic spaces of Banach-valued functions is analyzed from the unified point of view. A number of sufficient parameterized classes of conditions are obtained that are expressed in terms of the approximation $\mathcal D$-functional and are sharp in a certain sense. Some classes of conditions are given with a simultaneous use of local and global approximations. The inhomogeneity of the dependence on certain parameters is revealed. The results obtained also apply to nonsingular (in the ordinary sense) integral operators, for example, to potential-type operators. The main results are presented in the style of the Calderón–Zygmund theory. The approach is based on the study of $p$-convex hulls, decompositions into a sum of atomic complexes, and other properties of function spaces.
@article{TRSPY_2003_243_a3,
     author = {S. S. Ajiev},
     title = {On the {Boundedness} of {Singular} {Integral} {Operators.~I}},
     journal = {Informatics and Automation},
     pages = {17--45},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a3/}
}
TY  - JOUR
AU  - S. S. Ajiev
TI  - On the Boundedness of Singular Integral Operators.~I
JO  - Informatics and Automation
PY  - 2003
SP  - 17
EP  - 45
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a3/
LA  - ru
ID  - TRSPY_2003_243_a3
ER  - 
%0 Journal Article
%A S. S. Ajiev
%T On the Boundedness of Singular Integral Operators.~I
%J Informatics and Automation
%D 2003
%P 17-45
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a3/
%G ru
%F TRSPY_2003_243_a3
S. S. Ajiev. On the Boundedness of Singular Integral Operators.~I. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 17-45. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a3/

[1] Besov O. V., Ilin V. P., Lizorkin P. I., “$L_p$-otsenki nekotorogo klassa neizotropno singulyarnykh integralov”, DAN SSSR, 169 (1966), 1250–1253 | MR | Zbl

[2] Ajiev S. S., “On a uniform approach to singular integral operators”, Intern. Conf. on Harmonic Analysis and Related Topics (Sydney, Jan. 2002), Proc. Centre Math. Appl. ANU, 43, Austral. Nat. Univ., Canberra, 2003, 1–16 | MR

[3] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl

[4] Hörmander L., “Estimates for translation invariant operators on $L^p$ spaces”, Acta Math., 104 (1960), 93–139 | DOI | MR

[5] Besov O. V., “Teorema Littlvuda–Peli dlya prostranstv so smeshannoi normoi”, Tr. MIAN, 170, 1984, 31–36 | MR | Zbl

[6] Lizorkin P. I., “O teoreme tipa Martsinkevicha dlya $H$-znachnykh funktsii. Kontinualnaya forma teoremy Littlvuda–Paleya”, Mat. sb., 87(129):2 (1972), 229–235 | MR | Zbl

[7] Schwartz J. T., “A remark on inequalities of Calderon–Zygmund type for vector-valued functions”, Commun. Pure and Appl. Math., 14 (1961), 785–799 | DOI | MR | Zbl

[8] Triebel H., “Spaces of distributions of Besov type on Euclidean $n$-space. Duality, interpolation”, Ark. Mat., 11 (1973), 13–64 | DOI | MR | Zbl

[9] Lizorkin P. I., “$(L_p,L_q)$-multiplikatory integralov Fure”, DAN SSSR, 152 (1963), 808–811 | MR | Zbl

[10] Calderón A. P., Torchinski A., “Parabolic maximal functions assosiated with a distribution, I, II”, Adv. Math., 16 (1975), 1–64 ; 24 (1977), 101–171 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Benedek A., Calderón A. P., Panzone R., “Convolution operators on Banach space valued functions”, Proc. Nat. Acad. Sci. USA, 48 (1962), 356–365 | DOI | MR | Zbl

[12] Bourgain J., “Extension of a result of Benedek, Calderón and Panzone”, Ark. Mat., 22 (1984), 91–95 | DOI | MR | Zbl

[13] Rubio de Francia J. L., Ruiz F. J., Torrea J. L., “Calderón–Zygmund theory for operator-valued kernels”, Adv. Math., 62 (1986), 7–48 | DOI | MR | Zbl

[14] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; 2-е изд., 1996 | MR | Zbl

[15] Meyer Y., Coifman R., Wavelets. Calderón–Zygmund and multilinear operators, Transl. from French by D. Salinger, Cambridge Stud. Adv. Math., 48, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[16] Fefferman C., Stein E. M., “$H_p$-spaces of several variables”, Acta Math., 129 (1972), 137–194 | DOI | MR

[17] Coifman R. R., “A real variable characterization of $H_p$”, Stud. Math., 51 (1974), 269–274 | MR | Zbl

[18] Álvarez J., Milman M., “$H_p$ continuity properties of Calderón–Zygmund-type operators”, J. Math. Anal. and Appl., 118:1 (1986), 63–79 | DOI | MR | Zbl

[19] Álvarez J., “$H_p$ and weak $L_p$ continuity of Calderón–Zygmund type operators”, Fourier Analysis (Orono, ME, 1992), Lect. Notes Pure and Appl. Math., 157, M. Dekker, New York, 1994, 17–34 | MR | Zbl

[20] Fan D. S., “A weak estimate of Calderón–Zygmund operators”, Integr. Equat. and Oper. Theory, 20:4 (1994), 383–394 | DOI | MR | Zbl

[21] Fefferman R., Soria F., “The space Weak $H_1$”, Stud. Math., 85 (1987), 1–16 | MR

[22] Liu He Ping, “The weak $H^p$ spaces on homogeneous groups”, Harmonic Analysis (Tianjin, 1988), Lect. Notes Math., 1494, Springer, Berlin, 1991, 113–118 | MR | Zbl

[23] Hebich W., “A multiplier theorem for Schrödinger operators”, Colloq. Math., 60/61 (1990), 659–664 | MR

[24] Duong X., McIntosh A., “Singular integral operators with non-smooth kernels on irregular domains”, Rev. Mat. Iberoamer, 15:2 (1999), 233–265 | MR | Zbl

[25] Duong X.T., Robinson D. W., “Semigroup kernels, Poisson bounds, and holomorphic functional calculus”, J. Funct. Anal., 142 (1996), 89–128 | DOI | MR | Zbl

[26] Aleksandrov A. B., “Essays on nonlocally convex Hardy classses”, Complex analysis and spectral theory, Seminar (Leningrad, 1979/80), Lect. Notes Math., 864, Springer, Berlin, 1981, 1–89 | MR

[27] Duren P. L., Romberg B. W., Shields A. L., “Linear functionals on $H^p$ spaces with $0

1$”, J. Reine und Angew. Math., 238 (1969), 32–60 | MR | Zbl

[28] Hunt R. A., “On $L_{p,q}$ spaces”, Enseign. Math., 12 (1966), 249–276 | MR | Zbl

[29] Kalton N. J., “Linear operators on $L_p$ for $0

1$”, Trans. Amer. Math. Soc., 259:2 (1980), 319–355 | DOI | MR | Zbl

[30] Stein E. M., Taibleson M., Weiss G., “Weak type estimates for maximal operators on certain $H_p$ classes”, Rend. Circ. Mat. Palermo. Suppl., 1 (1981), 81–97 | MR | Zbl

[31] Latter R., “A characterization of $H_p(\mathbb{R}^n)$ in terms of atoms”, Stud. Math., 62 (1978), 93–101 | MR | Zbl

[32] Fefferman C., Rivière N. M., Sagher Y., “Interpolation between $H_p$ spaces: the real method”, Trans. Amer. Math. Soc., 191 (1974), 75–81 | DOI | MR | Zbl

[33] Peetre J., Sparr G., “Interpolation of normed abelian groups”, Ann. Mat. Pura ed Appl. Ser. 4, 92 (1972), 217–262 | DOI | MR | Zbl