Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_243_a3, author = {S. S. Ajiev}, title = {On the {Boundedness} of {Singular} {Integral} {Operators.~I}}, journal = {Informatics and Automation}, pages = {17--45}, publisher = {mathdoc}, volume = {243}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a3/} }
S. S. Ajiev. On the Boundedness of Singular Integral Operators.~I. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 17-45. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a3/
[1] Besov O. V., Ilin V. P., Lizorkin P. I., “$L_p$-otsenki nekotorogo klassa neizotropno singulyarnykh integralov”, DAN SSSR, 169 (1966), 1250–1253 | MR | Zbl
[2] Ajiev S. S., “On a uniform approach to singular integral operators”, Intern. Conf. on Harmonic Analysis and Related Topics (Sydney, Jan. 2002), Proc. Centre Math. Appl. ANU, 43, Austral. Nat. Univ., Canberra, 2003, 1–16 | MR
[3] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl
[4] Hörmander L., “Estimates for translation invariant operators on $L^p$ spaces”, Acta Math., 104 (1960), 93–139 | DOI | MR
[5] Besov O. V., “Teorema Littlvuda–Peli dlya prostranstv so smeshannoi normoi”, Tr. MIAN, 170, 1984, 31–36 | MR | Zbl
[6] Lizorkin P. I., “O teoreme tipa Martsinkevicha dlya $H$-znachnykh funktsii. Kontinualnaya forma teoremy Littlvuda–Paleya”, Mat. sb., 87(129):2 (1972), 229–235 | MR | Zbl
[7] Schwartz J. T., “A remark on inequalities of Calderon–Zygmund type for vector-valued functions”, Commun. Pure and Appl. Math., 14 (1961), 785–799 | DOI | MR | Zbl
[8] Triebel H., “Spaces of distributions of Besov type on Euclidean $n$-space. Duality, interpolation”, Ark. Mat., 11 (1973), 13–64 | DOI | MR | Zbl
[9] Lizorkin P. I., “$(L_p,L_q)$-multiplikatory integralov Fure”, DAN SSSR, 152 (1963), 808–811 | MR | Zbl
[10] Calderón A. P., Torchinski A., “Parabolic maximal functions assosiated with a distribution, I, II”, Adv. Math., 16 (1975), 1–64 ; 24 (1977), 101–171 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Benedek A., Calderón A. P., Panzone R., “Convolution operators on Banach space valued functions”, Proc. Nat. Acad. Sci. USA, 48 (1962), 356–365 | DOI | MR | Zbl
[12] Bourgain J., “Extension of a result of Benedek, Calderón and Panzone”, Ark. Mat., 22 (1984), 91–95 | DOI | MR | Zbl
[13] Rubio de Francia J. L., Ruiz F. J., Torrea J. L., “Calderón–Zygmund theory for operator-valued kernels”, Adv. Math., 62 (1986), 7–48 | DOI | MR | Zbl
[14] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; 2-е изд., 1996 | MR | Zbl
[15] Meyer Y., Coifman R., Wavelets. Calderón–Zygmund and multilinear operators, Transl. from French by D. Salinger, Cambridge Stud. Adv. Math., 48, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[16] Fefferman C., Stein E. M., “$H_p$-spaces of several variables”, Acta Math., 129 (1972), 137–194 | DOI | MR
[17] Coifman R. R., “A real variable characterization of $H_p$”, Stud. Math., 51 (1974), 269–274 | MR | Zbl
[18] Álvarez J., Milman M., “$H_p$ continuity properties of Calderón–Zygmund-type operators”, J. Math. Anal. and Appl., 118:1 (1986), 63–79 | DOI | MR | Zbl
[19] Álvarez J., “$H_p$ and weak $L_p$ continuity of Calderón–Zygmund type operators”, Fourier Analysis (Orono, ME, 1992), Lect. Notes Pure and Appl. Math., 157, M. Dekker, New York, 1994, 17–34 | MR | Zbl
[20] Fan D. S., “A weak estimate of Calderón–Zygmund operators”, Integr. Equat. and Oper. Theory, 20:4 (1994), 383–394 | DOI | MR | Zbl
[21] Fefferman R., Soria F., “The space Weak $H_1$”, Stud. Math., 85 (1987), 1–16 | MR
[22] Liu He Ping, “The weak $H^p$ spaces on homogeneous groups”, Harmonic Analysis (Tianjin, 1988), Lect. Notes Math., 1494, Springer, Berlin, 1991, 113–118 | MR | Zbl
[23] Hebich W., “A multiplier theorem for Schrödinger operators”, Colloq. Math., 60/61 (1990), 659–664 | MR
[24] Duong X., McIntosh A., “Singular integral operators with non-smooth kernels on irregular domains”, Rev. Mat. Iberoamer, 15:2 (1999), 233–265 | MR | Zbl
[25] Duong X.T., Robinson D. W., “Semigroup kernels, Poisson bounds, and holomorphic functional calculus”, J. Funct. Anal., 142 (1996), 89–128 | DOI | MR | Zbl
[26] Aleksandrov A. B., “Essays on nonlocally convex Hardy classses”, Complex analysis and spectral theory, Seminar (Leningrad, 1979/80), Lect. Notes Math., 864, Springer, Berlin, 1981, 1–89 | MR
[27] Duren P. L., Romberg B. W., Shields A. L., “Linear functionals on $H^p$ spaces with $0
1$”, J. Reine und Angew. Math., 238 (1969), 32–60 | MR | Zbl[28] Hunt R. A., “On $L_{p,q}$ spaces”, Enseign. Math., 12 (1966), 249–276 | MR | Zbl
[29] Kalton N. J., “Linear operators on $L_p$ for $0
1$”, Trans. Amer. Math. Soc., 259:2 (1980), 319–355 | DOI | MR | Zbl[30] Stein E. M., Taibleson M., Weiss G., “Weak type estimates for maximal operators on certain $H_p$ classes”, Rend. Circ. Mat. Palermo. Suppl., 1 (1981), 81–97 | MR | Zbl
[31] Latter R., “A characterization of $H_p(\mathbb{R}^n)$ in terms of atoms”, Stud. Math., 62 (1978), 93–101 | MR | Zbl
[32] Fefferman C., Rivière N. M., Sagher Y., “Interpolation between $H_p$ spaces: the real method”, Trans. Amer. Math. Soc., 191 (1974), 75–81 | DOI | MR | Zbl
[33] Peetre J., Sparr G., “Interpolation of normed abelian groups”, Ann. Mat. Pura ed Appl. Ser. 4, 92 (1972), 217–262 | DOI | MR | Zbl