Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 334-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the embedding theorems $W_p^s(G) \subset L_q (G)$, $W_p^s(G)\subset L_{\Phi}(G)$, and $W_p^s(G)\subset\mathrm{BMO}(G)$, admissible relations between the smoothness and summability parameters are determined by the geometric properties of the underlying domain $G$. These theorems are proved here for domains with irregular boundary. The results are extended to weighted spaces.
@article{TRSPY_2003_243_a22,
     author = {Boris V. Trushin},
     title = {Embedding of the {Sobolev} {Space} into the {Orlicz} and {BMO} {Spaces} with {Power} {Weights}},
     journal = {Informatics and Automation},
     pages = {334--345},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/}
}
TY  - JOUR
AU  - Boris V. Trushin
TI  - Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights
JO  - Informatics and Automation
PY  - 2003
SP  - 334
EP  - 345
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/
LA  - ru
ID  - TRSPY_2003_243_a22
ER  - 
%0 Journal Article
%A Boris V. Trushin
%T Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights
%J Informatics and Automation
%D 2003
%P 334-345
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/
%G ru
%F TRSPY_2003_243_a22
Boris V. Trushin. Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 334-345. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[2] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR

[3] Reshetnyak Yu. G., “Integralnye predstavleniya funktsii v oblastyakh s negladkoi granitsei”, Sib. mat. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[4] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[5] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | MR | Zbl

[6] Pokhozhaev S. I., “O teoreme vlozheniya Soboleva v sluchae $pl=n$”, Dokl. nauch.-tekhn. konf. MEI. Sekts. mat., MEI, M., 1965, 158–170

[7] Yudovich V. I., “O nekotorykh otsenkakh, svyazannykh s integralnymi operatorami i resheniyami ellipticheskikh uravnenii”, DAN SSSR, 138:4 (1961), 805–808 | Zbl

[8] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $Au+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | Zbl

[9] Trudinger N. S., “On imbeddings into Orlicz spaces and some applications”, J. Math. and Mech., 17:5 (1967), 473–483 | MR | Zbl

[10] Stampacchia G., “The spaces $\mathcal{C}^{(p,\lambda)}$, $\mathcal{R}^{(p,\lambda)}$ and interpolation”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 19:3 (1965), 443–462 | MR | Zbl

[11] Brudnyi Yu. A., “Prostranstva, opredelyaemye s pomoschyu lokalnykh priblizhenii”, Tr. Mosk. mat. o-va, 24, 1971, 69–132 | MR | Zbl

[12] Moser J., “A sharp form of an inequality by N. Trudinger”, Indiana Univ. Math. J., 20:11 (1971), 1077–1092 | DOI | MR

[13] Edmunds D. E., Evans W. D., “Orlicz and Sobolev spaces on unbounded domains”, Proc. Roy. Soc. London A., 342 (1975), 373–400 | DOI | MR | Zbl

[14] Cianchi A., “A sharp embedding theorem for Orlicz–Sobolev spaces”, Indiana Univ. Math. J., 45 (1996), 39–65 | DOI | MR | Zbl

[15] John F., Nirenberg L., “On functions of bounded mean oscillation”, Commun. Pure and Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[16] Triebel H., “Theorems of Littlewood–Paley type for BMO and for anisotropic Hardy spaces”, Constructive function theory 77, Proc. Intern. Conf. (Blagoevgrad, 1977), Bulg. Acad. Sci., Sofia, 1980, 525–532

[17] Fefferman C., “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl

[18] Strichartz R. S., “Bounded mean oscillation and Sobolev spaces”, Indiana Univ. Math. J., 29:4 (1980), 539–558 | DOI | MR | Zbl

[19] Cianchi A., Pick L., “Sobolev embeddings into BMO, VMO, and $L_{\infty}$”, Ark. Mat., 36 (1998), 317–340 | DOI | MR | Zbl

[20] Trushin B. V., “Vlozhenie prostranstva Soboleva v prostranstvo Orlicha dlya oblasti s neregulyarnoi granitsei”, Mat. zametki (to appear)

[21] Jones P. W., “Extension theorems for BMO”, Indiana Univ. Math. J., 29:1 (1980), 41–66 | DOI | MR | Zbl

[22] Kufner A., John O., Fućik S., Function spaces, Academia, Prague, 1977 | MR | Zbl

[23] Campanato S., “Proprietà di una famiglia di spazi funzionali”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 18 (1964), 137–160 | MR | Zbl

[24] Kokilashvili V. M., Gabidzashvili M. A., “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i tselykh funktsii”, DAN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl

[25] Gabidzashvili M. A., “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbil. mat. in-ta, 82, 1986, 25–36 | MR | Zbl

[26] Besov O. V., “Vlozhenie prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214, 1997, 25–58 | Zbl