Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 334-345

Voir la notice de l'article provenant de la source Math-Net.Ru

In the embedding theorems $W_p^s(G) \subset L_q (G)$, $W_p^s(G)\subset L_{\Phi}(G)$, and $W_p^s(G)\subset\mathrm{BMO}(G)$, admissible relations between the smoothness and summability parameters are determined by the geometric properties of the underlying domain $G$. These theorems are proved here for domains with irregular boundary. The results are extended to weighted spaces.
@article{TRSPY_2003_243_a22,
     author = {Boris V. Trushin},
     title = {Embedding of the {Sobolev} {Space} into the {Orlicz} and {BMO} {Spaces} with {Power} {Weights}},
     journal = {Informatics and Automation},
     pages = {334--345},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/}
}
TY  - JOUR
AU  - Boris V. Trushin
TI  - Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights
JO  - Informatics and Automation
PY  - 2003
SP  - 334
EP  - 345
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/
LA  - ru
ID  - TRSPY_2003_243_a22
ER  - 
%0 Journal Article
%A Boris V. Trushin
%T Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights
%J Informatics and Automation
%D 2003
%P 334-345
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/
%G ru
%F TRSPY_2003_243_a22
Boris V. Trushin. Embedding of the Sobolev Space into the Orlicz and BMO Spaces with Power Weights. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 334-345. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a22/