Approximation of Derivatives by the Derivatives of Interpolating Splines
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 320-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $s_{r-1, 2n} (f, x)$ be a spline of degree $r-1$ of defect 1 with $2n$ equidistant nodes which interpolates a function $f$ at the nodes when $r-1$ is odd and at the midpoints of the intervals connecting neighboring nodes when $r-1$ is even. It is known that such splines provide the best approximations of the classes $W^r$ of $2 \pi$-periodic differentiable functions. Moreover, the derivatives $s_{r-1, 2n}' (f, x)$ provide the best approximations of the class of derivatives $f'(x)$ of the functions $f\in W^r$. In this paper, we consider a similar problem on the approximation of derivatives of order $r-1$ and obtain an estimate that is uniform in $r$ and $n$.
@article{TRSPY_2003_243_a21,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Approximation of {Derivatives} by the {Derivatives} of {Interpolating} {Splines}},
     journal = {Informatics and Automation},
     pages = {320--333},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - Approximation of Derivatives by the Derivatives of Interpolating Splines
JO  - Informatics and Automation
PY  - 2003
SP  - 320
EP  - 333
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/
LA  - ru
ID  - TRSPY_2003_243_a21
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T Approximation of Derivatives by the Derivatives of Interpolating Splines
%J Informatics and Automation
%D 2003
%P 320-333
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/
%G ru
%F TRSPY_2003_243_a21
Yu. N. Subbotin; S. A. Telyakovskii. Approximation of Derivatives by the Derivatives of Interpolating Splines. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 320-333. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/

[1] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, UMN, 15:3 (1960), 81–120 | MR | Zbl

[2] Tikhomirov V. M., “Nailuchshie metody priblizheniya i interpolirovaniya differentsiruemykh funktsii v prostranstve $C_{[-1,1]}$”, Mat. sb., 80 (1969), 290–304 | Zbl

[3] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[4] Favard J., “Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynomes trigonométriques”, Bull. Sci. Math., 61 (1937), 209–224, 243–256 | Zbl

[5] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78, 1965, 24–42 | MR | Zbl

[6] Korneichuk N. P., “O priblizhenii interpolyatsionnymi splainami funktsii i ikh proizvodnykh”, DAN SSSR, 264 (1982), 1063–1066 | MR

[7] Korneichuk N. P., “O poluchenii tochnykh otsenok dlya proizvodnoi pogreshnosti splain-interpolirovaniya”, Ukr. mat. zhurn., 43 (1991), 206–210 | MR

[8] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR

[9] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Izbr. trudy. Matematika i mekhanika, Nauka, M., 1985, 252–263 | MR

[10] Garkavi A. L., “O sovmestnom priblizhenii periodicheskoi funktsii i ee proizvodnykh trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. mat., 24 (1960), 103–128 | MR | Zbl

[11] Temlyakov V. N., “O sootnosheniyakh mezhdu nailuchshimi priblizheniyami analiticheskikh v bikruge funktsii”, Tr. MIAN, 164, 1983, 189–196 | MR | Zbl

[12] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR

[13] Zhensykbaev A. A., “Tochnye otsenki ravnomernogo priblizheniya nepreryvnykh periodicheskikh funktsii splainami $r$-go poryadka”, Mat. zametki, 13 (1973), 217–228 | Zbl

[14] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 1, Fizmatgiz, M., 1959 | MR | Zbl

[15] Subbotin Yu. N., Telyakovskii S. A., “Normy v $L$ periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. zametki, 74 (2003), 108–117 | MR | Zbl

[16] Sazanov A. A., “Verkhnie grani uklonenii interpolyatsionnykh splainov na nekotorykh klassakh funktsii”, Metody splain-funktsii, Vychislitelnye sistemy, 81, In-t matematiki SOAN SSSR, Novosibirsk, 1979, 31–41

[17] Marsden M. J., Richards F. B., Riemenschneider S. D., “Cardinal splines interpolation operators on $l^p$ data”, Indiana Univ. Math. J., 24 (1975), 677–689 | DOI | MR | Zbl