Approximation of Derivatives by the Derivatives of Interpolating Splines
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 320-333

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $s_{r-1, 2n} (f, x)$ be a spline of degree $r-1$ of defect 1 with $2n$ equidistant nodes which interpolates a function $f$ at the nodes when $r-1$ is odd and at the midpoints of the intervals connecting neighboring nodes when $r-1$ is even. It is known that such splines provide the best approximations of the classes $W^r$ of $2 \pi$-periodic differentiable functions. Moreover, the derivatives $s_{r-1, 2n}' (f, x)$ provide the best approximations of the class of derivatives $f'(x)$ of the functions $f\in W^r$. In this paper, we consider a similar problem on the approximation of derivatives of order $r-1$ and obtain an estimate that is uniform in $r$ and $n$.
@article{TRSPY_2003_243_a21,
     author = {Yu. N. Subbotin and S. A. Telyakovskii},
     title = {Approximation of {Derivatives} by the {Derivatives} of {Interpolating} {Splines}},
     journal = {Informatics and Automation},
     pages = {320--333},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - S. A. Telyakovskii
TI  - Approximation of Derivatives by the Derivatives of Interpolating Splines
JO  - Informatics and Automation
PY  - 2003
SP  - 320
EP  - 333
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/
LA  - ru
ID  - TRSPY_2003_243_a21
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A S. A. Telyakovskii
%T Approximation of Derivatives by the Derivatives of Interpolating Splines
%J Informatics and Automation
%D 2003
%P 320-333
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/
%G ru
%F TRSPY_2003_243_a21
Yu. N. Subbotin; S. A. Telyakovskii. Approximation of Derivatives by the Derivatives of Interpolating Splines. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 320-333. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a21/