Embedding Theorems for Besov Spaces over Multiplicative Price Bases
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 313-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of Fourier series in multiplicative systems is one of intensively developing directions in harmonic analysis. In this paper, a Besov space over the multiplicative Price basis is introduced. Equivalent norms of the elements of this space are found, and a sharp embedding theorem of different metrics is proved.
@article{TRSPY_2003_243_a20,
     author = {E. S. Smailov and Z. R. Suleimenova},
     title = {Embedding {Theorems} for {Besov} {Spaces} over {Multiplicative} {Price} {Bases}},
     journal = {Informatics and Automation},
     pages = {313--319},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a20/}
}
TY  - JOUR
AU  - E. S. Smailov
AU  - Z. R. Suleimenova
TI  - Embedding Theorems for Besov Spaces over Multiplicative Price Bases
JO  - Informatics and Automation
PY  - 2003
SP  - 313
EP  - 319
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a20/
LA  - ru
ID  - TRSPY_2003_243_a20
ER  - 
%0 Journal Article
%A E. S. Smailov
%A Z. R. Suleimenova
%T Embedding Theorems for Besov Spaces over Multiplicative Price Bases
%J Informatics and Automation
%D 2003
%P 313-319
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a20/
%G ru
%F TRSPY_2003_243_a20
E. S. Smailov; Z. R. Suleimenova. Embedding Theorems for Besov Spaces over Multiplicative Price Bases. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 313-319. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a20/

[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, EMI, Baku, 1984

[2] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[3] Smailov E. S., Teoremy vlozheniya dlya funktsionalnykh prostranstv s ortogonalnym bazisom i ikh prilozheniya, Dis. $\dots$ kand. fiz.-mat. nauk, 1973

[4] Smailov E. S., Multiplikatory Fure, teoremy vlozheniya i smezhnye s nimi voprosy, Dis. $\dots$ dokt. fiz.-mat. nauk, Alma-Ata, 1997

[5] Besov O. V., “Issledovanie odnogo semeistva funktsionalnykh prostranstv v svyazi s teoremami vlozheniya i prodolzheniya”, Tr. MIAN, 60, 1961, 42–81 | MR

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[7] Amanov T. I., “Teoremy predstavleniya i vlozheniya dlya funktsionalnykh prostranstv $S_{p,\theta}^{(\mathbf{r})}B(R_n)$ i $S_{p,\theta^*}^{(\mathbf{r})}B(0\leqslant x_j\leqslant2\pi;j=1,\dots,n)$”, Tr. MIAN, 77, 1965, 5–34 | MR | Zbl

[8] Young W. S., “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl

[9] Smailov E. S., “Ob usloviyakh vlozheniya v prostranstvo $L_q(G^n)$ v terminakh srednikh ryadov Fure–Praisa”, Vestn. Ros. un-ta druzhby narodov. Ser. mat., 3:2 (1996), 96–107