Weighted Estimates for the Riemann--Liouville Operators and Applications
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 289-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the weighted boundedness and compactness of the Riemann–Liouville operators are obtained. Applications to the solvability of the Abel nonlinear integral equations and to the embeddings of Besov-type spaces into weighted Lebesgue spaces on the semiaxis are given.
@article{TRSPY_2003_243_a19,
     author = {D. V. Prokhorov and V. D. Stepanov},
     title = {Weighted {Estimates} for the {Riemann--Liouville} {Operators} and {Applications}},
     journal = {Informatics and Automation},
     pages = {289--312},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a19/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - V. D. Stepanov
TI  - Weighted Estimates for the Riemann--Liouville Operators and Applications
JO  - Informatics and Automation
PY  - 2003
SP  - 289
EP  - 312
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a19/
LA  - ru
ID  - TRSPY_2003_243_a19
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A V. D. Stepanov
%T Weighted Estimates for the Riemann--Liouville Operators and Applications
%J Informatics and Automation
%D 2003
%P 289-312
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a19/
%G ru
%F TRSPY_2003_243_a19
D. V. Prokhorov; V. D. Stepanov. Weighted Estimates for the Riemann--Liouville Operators and Applications. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 289-312. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a19/

[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl

[2] Muckenhoupt B., “Hardy's inequalities with weights”, Stud. Math., 34:1 (1972), 31–38 | MR

[3] Bradley J. S., “Hardy inequalities with mixed norms”, Canad. Math. Bull., 21:1 (1978), 405–408 | MR | Zbl

[4] Kokilashvili V. M., “O neravenstvakh Khardi v vesovykh prostranstvakh”, Soobsch. AN GSSR, 96:1 (1979), 37–40 | MR | Zbl

[5] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985, 416 pp. | MR

[6] Sawyer E., “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281:1 (1984), 329–337 | DOI | MR | Zbl

[7] Sinnamon G., “Weighted Hardy and Opial-type inequalities”, J. Math. Anal. and Appl., 160 (1991), 434–445 | DOI | MR | Zbl

[8] Sinnamon G., Stepanov V. D., “The weighted Hardy inequality: new proofs and the case $p=1$”, J. London Math. Soc., 54 (1996), 89–101 | MR | Zbl

[9] Stepanov V. D., Two-weighted estimates for Riemann–Liouville integrals, Rept No 39, Ceskoslov. Akad. Věd. Mat. Ústav., Praha, 1988

[10] Martí{n}-Reyes J. F., Sawyer E., “Weighted inequalities for Riemann–Liouville fractional integrals of order one and greater”, Proc. Amer. Math. Soc., 106 (1989), 727–733 | DOI | MR | Zbl

[11] Oinarov R., “Dvustoronnie otsenki norm dlya klassov integralnykh operatorov”, Tr. MIAN, 204, 1993, 240–250 | MR | Zbl

[12] Bloom S., Kerman R., “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113 (1991), 135–141 | DOI | MR | Zbl

[13] Stepanov V. D., “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc., 50 (1994), 105–120 | MR | Zbl

[14] Lomakina E. N., Stepanov V. D., “On the Hardy-type integral operators in Banach function spaces”, Publ. Mat., 42:1 (1998), 165–194 | MR | Zbl

[15] Lai Q., “Weighted modular inequalities for Hardy type operators”, Proc. London Math. Soc., 79 (1999), 649–672 | DOI | MR | Zbl

[16] Stepanov V. D., Ushakova E. P., “Ob integralnykh operatorakh s peremennymi predelami integrirovaniya”, Tr. MIAN, 232, 2001, 298–317 | MR | Zbl

[17] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[18] Andersen K. F., Sawyer E. T., “Weighted norm inequalities for the Riemann–Liouville and Weyl fractional integral operators”, Trans. Amer. Math. Soc., 308:2 (1988), 547–558 | DOI | MR | Zbl

[19] Newman J., Solomyak M., “Two-sided estimates on singular values for a class of integral operators on the semiaxis”, Integr. Equat. and Oper. Theory, 20 (1994), 335–349 | DOI | MR | Zbl

[20] Meskhi A., “Solution of some weight problems for the Riemann–Liouville and Weyl operators”, Georg. Math. J., 5 (1998), 564–574 | MR

[21] Prokhorov D. V., “On the boundedness and compactness of a class of integral operators”, J. London Math. Soc., 61 (2000), 617–628 | DOI | MR | Zbl

[22] Solomyak M., “Estimates for the approximation numbers of the weighted Riemann–Liouville operator in the spaces $L_p$”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 371–383 | MR | Zbl

[23] Prokhorov D. V., Stepanov V. D., “Ob operatorakh Rimana–Liuvillya”, Dokl. RAN, 382:4 (2002), 452–455 | MR | Zbl

[24] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp. | MR

[25] Rakotondratsimba Y., “Weighted norm inequalities for Riemann–Liouville fractional integrals of order less than one”, Ztschr. Anal. und Anwend., 16 (1997), 801–829 | MR | Zbl

[26] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 500 pp. | MR

[27] Verbitsky I. E., “Superlinear equations, potential theory and weighted norm inequalities”, Nonlinear analysis, function spaces and applications, Proc. Spring School (Prague, 1998), 6, Olympia Press, Prague, 1999, 223–269 | MR

[28] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 480 pp. | MR

[29] Burenkov V. I., Goldman M. L., “O tochnykh analogakh neravenstva Khardi dlya raznostei v sluchae svyazannykh vesov”, Dokl. RAN, 366:2 (1999), 155–157 | MR | Zbl

[30] Burenkov V. I., Goldman M. L., “Neravenstva tipa Khardi dlya modulei nepreryvnosti”, Tr. MIAN, 227, 1999, 92–108 | MR | Zbl

[31] Neiman-zade M. I., Shkalikov A. A., “Operatory Shrëdingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Mat. zametki, 66:5 (1999), 723–733 | MR | Zbl

[32] Bak Dzh.-G., Shkalikov A. A., “Multiplikatory v dualnykh sobolevskikh prostranstvakh i operatory Shrëdingera s potentsialami-raspredeleniyami”, Mat. zametki, 71:5 (2002), 643–651 | MR | Zbl

[33] Maz'ya V. G., Verbitsky I. E., “Boundedness and compactness criteria for the one-dimensional Schrödinger operator”, Function spaces, interpolation theory and related topics, Proc. Conf. (Lund, 2000), W. de Gruyter, Berlin, 2002, 369–382 | MR

[34] Nassyrova M. G., Weighted inequalities involving Hardy-type and limiting geometric mean operators, Doct. thes., Lulea Univ. Technol., 2002, Pap. 3