Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_243_a18, author = {S. I. Pokhozhaev}, title = {On a~priori {Estimates} and {Gradient} {Catastrophes} of {Smooth} {Solutions} to {Hyperbolic} {Systems} of {Conservation} {Laws}}, journal = {Informatics and Automation}, pages = {257--288}, publisher = {mathdoc}, volume = {243}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/} }
TY - JOUR AU - S. I. Pokhozhaev TI - On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws JO - Informatics and Automation PY - 2003 SP - 257 EP - 288 VL - 243 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/ LA - ru ID - TRSPY_2003_243_a18 ER -
%0 Journal Article %A S. I. Pokhozhaev %T On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws %J Informatics and Automation %D 2003 %P 257-288 %V 243 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/ %G ru %F TRSPY_2003_243_a18
S. I. Pokhozhaev. On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 257-288. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/
[1] Alinhac S., Blow-up for nonlinear hyperbolic equations, Progr. Nonlin. Diff. Equat. and Appl., 17, Birkhäuser, Boston etc., 1995 | MR | Zbl
[2] Bressan A., Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[3] John F., “Formation of singularities in one-dimensional nonlinear wave propagation”, Commun. Pure and Appl. Math., 27:3 (1974), 377–405 | DOI | MR | Zbl
[4] John F., Nonlinear wave equations, formation of singularities, Univ. Lect. Ser., 2, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl
[5] Johnson J. L., “Global continuous solutions of hyperbolic systems of quasi-linear equations”, Bull. Amer. Math. Soc., 73:5 (1967), 639–641 | DOI | MR | Zbl
[6] De-Xing Kong, “Formation and propagation of singularities for $2\times2$ quasilinear hyperbolic systems”, Trans. Amer. Math. Soc., 354:8 (2002), 3155–3179 | DOI | MR | Zbl
[7] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81:2 (1970), 228–255 | Zbl
[8] Lax P., “Hyperbolic systems of conservative laws, II”, Commun. Pure and Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[9] Lax P., “Development of singularities of solutions of nonlinear hyperbolic partial differential equations”, J. Math. Phys., 5:5 (1964), 611–613 | DOI | MR | Zbl
[10] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR
[11] Pohozaev S. I., Veron L., “Blow-up results for nonlinear wave hyperbolic inequalities”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 29:2 (2001), 393–420 | MR
[12] Pokhozhaev S. I., “O mnogomernykh skalyarnykh zakonakh sokhraneniya”, Mat. sb., 194:1 (2003), 147–160 | MR | Zbl
[13] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR | Zbl
[14] Yamaguti M., Nishida T., “On some global solutions for quasilinear hyperbolic equations”, Funkcialaj Ekvacioj, 11 (1968), 51–57 | MR | Zbl