On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 257-288

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a priori estimates and blow-up of global smooth solutions to the Cauchy problem for nonlinear hyperbolic systems of conservation laws. A general approach is proposed to obtain integral a priori estimates for smooth solutions of such systems. An application to a system of equations for one-dimensional nonisentropic and isentropic flows of a polytropic gas is considered. Integral conditions for the initial data are found that give rise to the gradient catastrophe of such solutions.
@article{TRSPY_2003_243_a18,
     author = {S. I. Pokhozhaev},
     title = {On a~priori {Estimates} and {Gradient} {Catastrophes} of {Smooth} {Solutions} to {Hyperbolic} {Systems} of {Conservation} {Laws}},
     journal = {Informatics and Automation},
     pages = {257--288},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws
JO  - Informatics and Automation
PY  - 2003
SP  - 257
EP  - 288
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/
LA  - ru
ID  - TRSPY_2003_243_a18
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws
%J Informatics and Automation
%D 2003
%P 257-288
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/
%G ru
%F TRSPY_2003_243_a18
S. I. Pokhozhaev. On a~priori Estimates and Gradient Catastrophes of Smooth Solutions to Hyperbolic Systems of Conservation Laws. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 257-288. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a18/