On the Besov and Besov--Nikol'skii Classes and on Estimates for the Mixed Moduli of Smoothness of Fractional Derivatives
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 244-256

Voir la notice de l'article provenant de la source Math-Net.Ru

Fractional-order derivatives in the sense of Weyl are considered for functions of several variables. Estimates for the mixed moduli of smoothness for these derivatives are obtained in terms of the mixed moduli of smoothness of the functions themselves. These estimates are applied to study the interrelation between the Besov and Nikol'skii–Besov classes and the other classes of functions.
@article{TRSPY_2003_243_a17,
     author = {M. K. Potapov and B. V. Simonov and S. Yu. Tikhonov},
     title = {On the {Besov} and {Besov--Nikol'skii} {Classes} and on {Estimates} for the {Mixed} {Moduli} of {Smoothness} of {Fractional} {Derivatives}},
     journal = {Informatics and Automation},
     pages = {244--256},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a17/}
}
TY  - JOUR
AU  - M. K. Potapov
AU  - B. V. Simonov
AU  - S. Yu. Tikhonov
TI  - On the Besov and Besov--Nikol'skii Classes and on Estimates for the Mixed Moduli of Smoothness of Fractional Derivatives
JO  - Informatics and Automation
PY  - 2003
SP  - 244
EP  - 256
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a17/
LA  - ru
ID  - TRSPY_2003_243_a17
ER  - 
%0 Journal Article
%A M. K. Potapov
%A B. V. Simonov
%A S. Yu. Tikhonov
%T On the Besov and Besov--Nikol'skii Classes and on Estimates for the Mixed Moduli of Smoothness of Fractional Derivatives
%J Informatics and Automation
%D 2003
%P 244-256
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a17/
%G ru
%F TRSPY_2003_243_a17
M. K. Potapov; B. V. Simonov; S. Yu. Tikhonov. On the Besov and Besov--Nikol'skii Classes and on Estimates for the Mixed Moduli of Smoothness of Fractional Derivatives. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 244-256. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a17/