On the Gram Matrices of Systems of Uniformly Bounded Functions
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 237-243

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A_N$, $N=1,2,\dots $, be the set of the Gram matrices of systems $\{e_j\}_{j=1}^N$ formed by vectors $e_j$ of a Hilbert space $H$ with norms $\|e_j\|_H\le 1$, $j=1,\dots ,N$. Let $B_N(K)$ be the set of the Gram matrices of systems $\{f_j\}_{j=1}^N$ formed by functions $f_j\in L^\infty (0,1)$ with $\|f_j\|_{L^\infty (0,1)}\le K$, $j=1,\dots ,N$. It is shown that, for any $K$, the set $B_N(K)$ is narrower than $A_N$ as $N\to \infty$. More precisely, it is proved that not every matrix $A$ in $A_N$ can be represented as $A=B+\Delta $, where $B\in B_N(K)$ and $\Delta $ is a diagonal matrix.
@article{TRSPY_2003_243_a16,
     author = {B. S. Kashin and S. J. Szarek},
     title = {On the {Gram} {Matrices} of {Systems} of {Uniformly} {Bounded} {Functions}},
     journal = {Informatics and Automation},
     pages = {237--243},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a16/}
}
TY  - JOUR
AU  - B. S. Kashin
AU  - S. J. Szarek
TI  - On the Gram Matrices of Systems of Uniformly Bounded Functions
JO  - Informatics and Automation
PY  - 2003
SP  - 237
EP  - 243
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a16/
LA  - ru
ID  - TRSPY_2003_243_a16
ER  - 
%0 Journal Article
%A B. S. Kashin
%A S. J. Szarek
%T On the Gram Matrices of Systems of Uniformly Bounded Functions
%J Informatics and Automation
%D 2003
%P 237-243
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a16/
%G ru
%F TRSPY_2003_243_a16
B. S. Kashin; S. J. Szarek. On the Gram Matrices of Systems of Uniformly Bounded Functions. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 237-243. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a16/