Strengthened Sobolev Spaces for Domains with Irregular Boundary
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 213-229

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of strengthened Sobolev spaces $G^{1,m}\equiv G^{1,m}(\Omega ;S)$, $m\geq 1/2$, are studied. These spaces are constructed on the basis of the classical space $W_2^1(\Omega )\equiv H^1(\Omega )$ for a bounded plane domain $\Omega$ whose boundary $\Gamma$ is not, in general, Lipschitzian; $S\subset \bar\Omega\equiv\Omega\cup \Gamma$; and $S=\bar S$ consists of finitely many smooth arcs. Special attention is given to situations when either a singular point of the boundary (the definition is given below) belongs to $S$ or two arcs from $S$ are tangent at their common endpoint, whereby the interior angle between them is zero. Characteristics of traces on $S$ and $\Gamma$ are obtained that make it possible to prove not only an extension theorem but also theorems on approximation of elements from $G^{1,1}$ and their traces by smooth functions.
@article{TRSPY_2003_243_a14,
     author = {E. G. D'yakonov},
     title = {Strengthened {Sobolev} {Spaces} for {Domains} with {Irregular} {Boundary}},
     journal = {Informatics and Automation},
     pages = {213--229},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/}
}
TY  - JOUR
AU  - E. G. D'yakonov
TI  - Strengthened Sobolev Spaces for Domains with Irregular Boundary
JO  - Informatics and Automation
PY  - 2003
SP  - 213
EP  - 229
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/
LA  - ru
ID  - TRSPY_2003_243_a14
ER  - 
%0 Journal Article
%A E. G. D'yakonov
%T Strengthened Sobolev Spaces for Domains with Irregular Boundary
%J Informatics and Automation
%D 2003
%P 213-229
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/
%G ru
%F TRSPY_2003_243_a14
E. G. D'yakonov. Strengthened Sobolev Spaces for Domains with Irregular Boundary. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 213-229. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/