Strengthened Sobolev Spaces for Domains with Irregular Boundary
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 213-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of strengthened Sobolev spaces $G^{1,m}\equiv G^{1,m}(\Omega ;S)$, $m\geq 1/2$, are studied. These spaces are constructed on the basis of the classical space $W_2^1(\Omega )\equiv H^1(\Omega )$ for a bounded plane domain $\Omega$ whose boundary $\Gamma$ is not, in general, Lipschitzian; $S\subset \bar\Omega\equiv\Omega\cup \Gamma$; and $S=\bar S$ consists of finitely many smooth arcs. Special attention is given to situations when either a singular point of the boundary (the definition is given below) belongs to $S$ or two arcs from $S$ are tangent at their common endpoint, whereby the interior angle between them is zero. Characteristics of traces on $S$ and $\Gamma$ are obtained that make it possible to prove not only an extension theorem but also theorems on approximation of elements from $G^{1,1}$ and their traces by smooth functions.
@article{TRSPY_2003_243_a14,
     author = {E. G. D'yakonov},
     title = {Strengthened {Sobolev} {Spaces} for {Domains} with {Irregular} {Boundary}},
     journal = {Informatics and Automation},
     pages = {213--229},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/}
}
TY  - JOUR
AU  - E. G. D'yakonov
TI  - Strengthened Sobolev Spaces for Domains with Irregular Boundary
JO  - Informatics and Automation
PY  - 2003
SP  - 213
EP  - 229
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/
LA  - ru
ID  - TRSPY_2003_243_a14
ER  - 
%0 Journal Article
%A E. G. D'yakonov
%T Strengthened Sobolev Spaces for Domains with Irregular Boundary
%J Informatics and Automation
%D 2003
%P 213-229
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/
%G ru
%F TRSPY_2003_243_a14
E. G. D'yakonov. Strengthened Sobolev Spaces for Domains with Irregular Boundary. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 213-229. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a14/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[2] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[3] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[4] P. G. Ciarlet, L. Trabucho, J. M. Viano (eds.), Asymptotical methods for elastic structures, W. de Gruyter, Berlin, 1995 | MR

[5] Ciarlet P., Mathematical elasticity. V. 2: Theory of plates, Stud. Math. and Appl., 27, North-Holland, Amsterdam, 1997 | MR

[6] Dyakonov E. G., “Teoremy prodolzheniya dlya oblastei s nelipshitsevoi granitsei, ikh setochnye analogi i primeneniya”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Mezhdunar. konf., posv. 90-letiyu akademika S. M. Nikolskogo. Tez. dokl. (Moskva, 1995), PAIMS, M., 1995, 121

[7] D'yakonov E. G., “Effective numerical methods for solving elliptic problems in strengthened Sobolev spaces”, Seventh Copper Mountain Conf. on Multigrid Methods (Copper Mountain, 1995), NASA Conf. Publ., 3339, Hampton, 1996, 199–213

[8] D'yakonov E. G., Optimization in solving elliptic problems, CRC Press, Boca Raton, 1996 | MR

[9] Dyakonov E. G., “Usilennye prostranstva Soboleva i nekotorye novye tipy ellipticheskikh kraevykh zadach, II”, Dif. uravneniya, 34:4 (1998), 508–517 | MR

[10] Dyakonov E. G., “Novyi podkhod k kraevym usloviyam Dirikhle, osnovannyi na ispolzovanii usilennykh prostranstv Soboleva”, Dif. uravneniya, 34:10 (1998), 1359–1368 | MR

[11] Dyakonov E. G., “O predelnom rasscheplenii po podoblastyam nekotorykh spektralnykh zadach v usilennykh prostranstvakh Soboleva”, Dif. uravneniya, 36:7 (2000), 874–883 | MR

[12] Dyakonov E. G., Energeticheskie prostranstva i ikh primeneniya, VMK MGU, M., 2001 | MR

[13] Dyakonov E. G., “Nekotorye modifikatsii klassicheskogo printsipa Dirikhle”, Dokl. RAN, 377:1 (2001), 11–16 | MR

[14] Dyakonov E. G., “Nekotorye novye tipy energeticheskikh prostranstv i ikh primeneniya v teorii uprugosti”, Uprugost i neuprugost, MGU, M., 2001, 74–80

[15] D'yakonov E. G., “Strengthened and weakened energy spaces and their applications”, J. Comput., Civil and Struct. Eng., 1:1 (2000), 42–63

[16] F. A. Mehmeti, J. Below, S. Nicaise (eds.), Partial differentil equations on multistructures, Lect. Notes Pure and Appl. Math., 219, M. Dekker, New York, 2001 | MR

[17] Yakovlev G. N., “Zadacha Dirikhle dlya oblasti s nelipshitsevoi granitsei”, Dif. uravneniya, 1:8 (1965), 1085–1098 | Zbl

[18] Yakovlev G. N., “O sledakh funktsii iz prostranstva $W_p^l(\Omega)$ na kusochno gladkikh poverkhnostyakh”, Mat. sb., 74(116):4 (1967), 526–543 | MR | Zbl

[19] Maz'ya V. G., Sobolev spaces, Springer, Berlin, 1985 | MR

[20] Maz'ya V. G., Poborchii S. V., Differentiable functions on bad domains, World Sci., Singapore, 1997 | MR

[21] Vasilchik M. Yu., “Granichnye svoistva funktsii iz prostranstva Soboleva, opredelennykh v ploskoi oblasti s uglovymi tochkami”, Sib. mat. zhurn., 36:4 (1995), 787–804 | MR

[22] Besov O. V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Tp. MIAN, 232, 2001, 72–93 | MR | Zbl

[23] Kalyabin G. A., “The internal norming of retractions of Sobolev spaces onto plain domains with the points of sharpness”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Mezhdunar. konf., posv. 90-letiyu akademika S. M. Nikolskogo. Tez. dokl. (Moskva, 1995), PAIMS, M., 1995, 330

[24] Kufner A., Weighted Sobolev spaces, Teubner Texte Math., 31, Teubner, Leipzig, 1980 | MR | Zbl

[25] Krein S. G., Lineinye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1971 | MR

[26] Volevich L. R., Paneyakh B. P., “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, UMN, 20:1 (1965), 3–74 | MR | Zbl