On Optimal Embedding of Calderon Spaces and Generalized Besov Spaces
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 161-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

For isotropic Calderon-type spaces and generalized Besov spaces, criteria for embeddings into rearrangement invariant spaces are established, sharp estimates for decreasing rearrangements are found, and optimal rearrangement invariant spaces are described.
@article{TRSPY_2003_243_a12,
     author = {M. L. Gol'dman and R. A. Kerman},
     title = {On {Optimal} {Embedding} of {Calderon} {Spaces} and {Generalized} {Besov} {Spaces}},
     journal = {Informatics and Automation},
     pages = {161--193},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a12/}
}
TY  - JOUR
AU  - M. L. Gol'dman
AU  - R. A. Kerman
TI  - On Optimal Embedding of Calderon Spaces and Generalized Besov Spaces
JO  - Informatics and Automation
PY  - 2003
SP  - 161
EP  - 193
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a12/
LA  - ru
ID  - TRSPY_2003_243_a12
ER  - 
%0 Journal Article
%A M. L. Gol'dman
%A R. A. Kerman
%T On Optimal Embedding of Calderon Spaces and Generalized Besov Spaces
%J Informatics and Automation
%D 2003
%P 161-193
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a12/
%G ru
%F TRSPY_2003_243_a12
M. L. Gol'dman; R. A. Kerman. On Optimal Embedding of Calderon Spaces and Generalized Besov Spaces. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 161-193. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a12/

[1] Besov O. V., “Issledovanie odnogo semeistva funktsionalnykh prostranstv v svyazi s teoremami vlozheniya i prodolzheniya”, Tr. MIAN, 60, 1961, 42–81 | MR

[2] Brudnyi Yu. A., Shalashov V. K., “Lipshitsevy prostranstva funktsii”, Metricheskie voprosy teorii funktsii i otobrazhenii, Nauk. dumka, Kiev, 1973, 3–60 | MR

[3] Goldman M. L., “O vlozhenii konstruktivnykh i strukturnykh lipshitsevykh prostranstv v simmetrichnye”, Tr. MIAN, 173, 1986, 90–112 | MR

[4] Goldman M. L., “O vlozhenii raznykh metrik dlya prostranstv tipa Kalderona”, Tr. MIAN, 181, 1988, 70–94 | MR

[5] Netrusov Yu. V., “Teoremy vlozheniya prostranstv Besova v idealnye prostranstva”, Zap. nauch. seminarov LOMI, 159, 1987, 69–82 | Zbl

[6] Netrusov Yu. V., “Teoremy vlozheniya prostranstv Lizorkina–Tribelya”, Zap. nauch. seminarov LOMI, 159, 1987, 103–112 | Zbl

[7] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[8] Bennett C., Sharpley R., Interpolation of operators, Pure and Appl. Math., 129, Acad. Press, New York, 1988 | MR | Zbl

[9] Calderon A. P., “Intermediate spaces and interpolation, the complex method”, Stud. Math., 24:2 (1964), 113–190 | MR | Zbl

[10] Kalyabin G. A., “Kharakterizatsiya prostranstv tipa Besova–Lizorkina–Tribelya s pomoschyu obobschennykh raznostei”, Tr. MIAN, 181, 1988, 95–116 | MR

[11] Goldman M. L., “On integral inequalities on the set of functions with some properties of monotonicity”, Function spaces, differential operators and nonlinear analysis, Teubner Texte Math., 133, Teubner, Stuttgart, Leipzig, 1993, 274–279 | MR

[12] Berkolaiko M. Z., Ovchinnikov V. I., “Neravenstva dlya tselykh funktsii eksponentsialnogo tipa v simmetrichnykh prostranstvakh”, Tr. MIAN, 161, 1983, 3–17 | MR | Zbl

[13] Edmunds D., Kerman R., Pick L., Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, Preprint MATH-KMA-1999/10, Charles Univ., Prague, 1999, 37 pp. | MR

[14] Carro M., Soria J., “Weighted Lorentz spaces and the Hardy operator”, J. Funct. Anal., 112 (1993), 480–494 | DOI | MR | Zbl

[15] Goldman M. L., “Tochnye otsenki norm operatorov tipa Khardi na konusakh kvazimonotonnykh funktsii”, Tr. MIAN, 232, 2001, 115–143 | Zbl

[16] Gogatishvili A., Pick L., Discretization and anti-discretization of rearrangement invariant norms, Preprint MATH-KMA-2001/70, Charles Univ., Prague, 2002, 37 pp. | MR