Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_243_a11, author = {E. A. Volkov}, title = {A~Method of {Composite} {Grids} on {a~Prism} with an {Arbitrary} {Polygonal} {Base}}, journal = {Informatics and Automation}, pages = {138--160}, publisher = {mathdoc}, volume = {243}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a11/} }
E. A. Volkov. A~Method of Composite Grids on a~Prism with an Arbitrary Polygonal Base. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 138-160. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a11/
[1] Wasov W., “On the truncation error in the solution of Laplace's equation by finite differences”, J. Res. Nat. Bur. Standards, 48 (1952), 345–348 | MR
[2] Volkov E. A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN, 140, 1976, 68–102 | MR | Zbl
[3] Dosiyev A. A., “A fourth order accurate composite grids method for solving Laplace's boundary value problems with singularities”, ZhVM i MF, 42:6 (2002), 867–884 | MR | Zbl
[4] Volkov E. A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metoda setok”, Tr. MIAN, 105, 1969, 46–65 | Zbl
[5] Volkov E. A., “Effektivnyi metod kubicheskikh setok resheniya uravneniya Laplasa na parallelepipede pri razryvnykh granichnykh usloviyakh”, Tr. MIAN, 156, 1980, 30–46 | Zbl
[6] Volkov E. A., “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russ. J. Numer. Anal. Math. Modelling, 16:6 (2001), 519–527 | MR | Zbl
[7] Volkov E. A., “O gladkosti reshenii zadachi Dirikhle i metode sostavnykh setok na mnogogrannikakh”, Tr. MIAN, 150, 1979, 67–98 | MR | Zbl
[8] Kellog O. D., “On the derivatives of harmonic functions on the boundary”, Trans. Amer. Math. Soc., 33:2 (1931), 486–510 | DOI | MR | Zbl
[9] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957
[10] Lavrentev M. A., Shabat B. V, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR
[11] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[12] Keldysh M. V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1941, no. 8, 171–231 | MR | Zbl
[13] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Fizmatlit, M., SPb., 2001