Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space
Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 127-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Correct solvability in the scale of Sobolev spaces on the half-line is established for an initial value problem for one class of functional differential equations with unbounded operator-valued coefficients in a Hilbert space. The cases of constant and variable time delays are analyzed. The principal part of the equations under study is an abstract hyperbolic equation in a Hilbert space.
@article{TRSPY_2003_243_a10,
     author = {V. V. Vlasov and K. I. Shmatov},
     title = {Correct {Solvability} of {Hyperbolic-Type} {Equations} with {Delay} in {a~Hilbert} {Space}},
     journal = {Informatics and Automation},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {243},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a10/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - K. I. Shmatov
TI  - Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space
JO  - Informatics and Automation
PY  - 2003
SP  - 127
EP  - 137
VL  - 243
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a10/
LA  - ru
ID  - TRSPY_2003_243_a10
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A K. I. Shmatov
%T Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space
%J Informatics and Automation
%D 2003
%P 127-137
%V 243
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a10/
%G ru
%F TRSPY_2003_243_a10
V. V. Vlasov; K. I. Shmatov. Correct Solvability of Hyperbolic-Type Equations with Delay in a~Hilbert Space. Informatics and Automation, Function spaces, approximations, and differential equations, Tome 243 (2003), pp. 127-137. http://geodesic.mathdoc.fr/item/TRSPY_2003_243_a10/

[1] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Per. s fr., Mir, M., 1971 | Zbl

[2] Vlasov V. V., “O razreshimosti i otsenkakh reshenii funktsionalno-differentsialnykh uravnenii v prostranstvakh Soboleva”, Tr. MIAN, 227, 1999, 109–121 | MR | Zbl

[3] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[4] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[5] Kappel F., Kunisch K., “Invariance result for delay and Volterra equations in fractional order Sobolev spaces”, Trans. Amer. Math. Soc., 304:1 (1987), 1–51 | DOI | MR | Zbl

[6] Vlasov V. V., “O razreshimosti i svoistvakh reshenii funktsionalno-differentsialnykh uravnenii v gilbertovom prostranstve”, Mat. sb., 186:8 (1995), 67–92 | MR | Zbl

[7] Vlasov V. V., “O razreshimosti odnogo klassa differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1994, no. 6, 28–38 | MR | Zbl

[8] Vlasov V. V., “Korrektnaya razreshimost odnogo klassa differentsialnykh uravnenii s otklonyayuschimsya argumentom v gilbertovom prostranstve”, Izv. vuzov. Matematika, 1996, no. 1, 22–35 | MR | Zbl

[9] Vlasov V. V., Sakbaev V. Zh., “O korrektnoi razreshimosti v shkale prostranstv Soboleva nekotorykh differentsialno-raznostnykh uravnenii”, Dif. uravneniya, 37:9 (2001), 1194–1202 | MR | Zbl

[10] Di Blasio G., Kunisch K., Sinestrari E., “$L_2$-regularity for parabolic partial integrodifferential equations with delay in the highest-order derivatives”, J. Math. Anal. and Appl., 102:1 (1984), 38–57 | DOI | MR | Zbl

[11] Prüss J., “On linear Volterra equations of parabolic type in Banach spaces”, Trans. Amer. Math. Soc., 301:2 (1987), 691–721 | DOI | MR | Zbl

[12] Grimmer R. C., Kappel F., “Series expansions for resolvents of Volterra integrodifferential equations in Banach space”, SIAM J. Math. Anal., 15:3 (1984), 595–604 | DOI | MR | Zbl

[13] Prüss J., “Bounded solutions of Volterra equations”, SIAM J. Math. Anal., 19:1 (1988), 133–149 | DOI | MR | Zbl

[14] Kunisch K., Mastinšek M., “Dual semigroups and structural operators for partial functional differential equations with unbounded operators acting on the delays”, Diff. and Integ. Equat., 3:4 (1990), 733–756 | MR | Zbl

[15] Radzievskii G. V., “O bazisnosti proizvodnykh tsepochek”, Izv. AN SSSR. Ser. mat., 39:5 (1975), 1182–1218 | MR | Zbl

[16] Nakagiri S., “Structural properties of functional differential equations in Banach space”, Osaka J. Math., 25 (1988), 353–398 | MR | Zbl

[17] Wu J., “Semigroup and integral form of class of partial differential equations with infinite delay”, Diff. and Integ. Equat., 4:6 (1991), 1325–1351 | MR | Zbl

[18] Staffans O., “Some well-posed functional equations which generate semigroups”, J. Diff. Equat., 58:2 (1985), 157–191 | DOI | MR | Zbl

[19] Miller R. K., “Volterra integral equations in a Banach space”, Funkcialaj Ekvacioj, 18 (1975), 163–194 | MR

[20] Wu J., Theory and applications of partial functional differential equations, Appl. Math. Sci., 119, Springer, New York etc., 1996 | MR

[21] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel, Boston, Berlin, 1997 | MR | Zbl

[22] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, MAI, M., 1992 | MR | Zbl