On the Reconstruction of a~Boolean Function from Its Values on a~Limited Number of Domains
Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 108-122
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of recovering an arbitrary Boolean function from its values on a limited number of small-sized domains is considered. For any $n$-place Boolean function $f$, it is shown that there are $\mathcal O(n)$ domains of size $\mathcal O(n\log _2n\cdot 2L(f)\log _2L(f))$ such that $f$ is uniquely determined by its values in these domains.
@article{TRSPY_2003_242_a8,
author = {A. V. Chashkin},
title = {On the {Reconstruction} of {a~Boolean} {Function} from {Its} {Values} on {a~Limited} {Number} of {Domains}},
journal = {Informatics and Automation},
pages = {108--122},
publisher = {mathdoc},
volume = {242},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a8/}
}
A. V. Chashkin. On the Reconstruction of a~Boolean Function from Its Values on a~Limited Number of Domains. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 108-122. http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a8/