Finiteness Conditions for Algebras of Relations
Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 103-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebras of relations on a given set are considered; operations in an algebra are specified by various formulas of first-order logic. Different ways of introducing finiteness conditions for such algebras are studied. For each natural $n$, an example of an algebra is constructed that is generated by one $n$-ary relation and cannot be generated by its relations of smaller arity. An open problem is formulated.
@article{TRSPY_2003_242_a7,
     author = {A. L. Semenov},
     title = {Finiteness {Conditions} for {Algebras} of {Relations}},
     journal = {Informatics and Automation},
     pages = {103--107},
     publisher = {mathdoc},
     volume = {242},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a7/}
}
TY  - JOUR
AU  - A. L. Semenov
TI  - Finiteness Conditions for Algebras of Relations
JO  - Informatics and Automation
PY  - 2003
SP  - 103
EP  - 107
VL  - 242
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a7/
LA  - ru
ID  - TRSPY_2003_242_a7
ER  - 
%0 Journal Article
%A A. L. Semenov
%T Finiteness Conditions for Algebras of Relations
%J Informatics and Automation
%D 2003
%P 103-107
%V 242
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a7/
%G ru
%F TRSPY_2003_242_a7
A. L. Semenov. Finiteness Conditions for Algebras of Relations. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 103-107. http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a7/

[1] Semenov A. L., “Ob opredelimosti arifmetiki v ee fragmentakh”, DAN SSSR, 263:1 (1982), 44–47 | MR | Zbl

[2] Semenov A. L., “Logicheskie teorii odnomestnykh funktsii na naturalnom ryade”, Izv. AN SSSR. Ser. mat., 47:3 (1983), 623–658 | MR