Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_242_a4, author = {L. D. Beklemishev}, title = {Quantifier-Free {Induction} {Schema} and the {Least} {Element} {Principle}}, journal = {Informatics and Automation}, pages = {59--76}, publisher = {mathdoc}, volume = {242}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a4/} }
L. D. Beklemishev. Quantifier-Free Induction Schema and the Least Element Principle. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 59-76. http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a4/
[1] Beklemishev L. D., “Induction rules, reflection principles, and provably recursive functions”, Ann. Pure and Appl. Logic, 85 (1997), 193–242 | DOI | MR | Zbl
[2] Beklemishev L. D., “Open least element principle and bounded query computation”, Computer science logic, Proc. 13th Intern. Workshop CSL'99 (Madrid, Sept. 20–25, 1999), Lect. Notes Comput. Sci., 1683, eds. J. Flum, M. Rodrigues-Artalejo, Springer, Berlin, 1999, 389–404 | MR | Zbl
[3] Beklemishev L. D., “On the schema of induction for decidable predicates”, J. Symb. Logic, 68:1 (2003), 17–34 | DOI | MR | Zbl
[4] Buss S. R., “Introduction to proof theory”, Handbook of proof theory, Elsevier, Amsterdam, 1998, 1–78 | MR | Zbl
[5] Gaifman H., Dimitracopoulos C., “Fragments of Peano's arithmetic and the MDRP theorem”, Logic and algorithmic (Zurich, 1980), Monogr. Enseign. Math., 30, Univ. Genève, Genève, 1982, 187–206 | MR
[6] Hájek P., Pudlák P., Metamathematics of first order arithmetic, Springer, Berlin, Heidelberg, New York, 1993 | MR
[7] Parsons C., “On $n$-quantifier induction”, J. Symb. Logic, 37:3 (1972), 466–482 | DOI | MR | Zbl
[8] Rose H. E., Subrecursion: Functions and hierarchies, Clarendon Press, Oxford, 1984 | MR | Zbl
[9] Sieg W., “Herbrand analyses”, Arch. Math. Logic, 30 (1991), 409–441 | DOI | MR | Zbl
[10] Slaman T. A., “$\Sigma_n$-bounding and $\Delta_n$-induction”, Proc. Amer. Math. Soc (to appear) | MR