Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_242_a3, author = {S. N. Artemov}, title = {Embedding of the {Modal} $\lambda${-Calculus} into the {Logic} of {Proofs}}, journal = {Informatics and Automation}, pages = {44--58}, publisher = {mathdoc}, volume = {242}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a3/} }
S. N. Artemov. Embedding of the Modal $\lambda$-Calculus into the Logic of Proofs. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 44-58. http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a3/
[1] Artemov S., Operational modal logic, Tech. Rept. MSI 95-29, Cornell Univ., 1995 ; http://www.cs.gc.cuny.edu/~sartemov | MR
[2] Artemov S., “Explicit provability and constructive semantics”, Bull. Symb. Logic, 7:1 (2001), 1–36 ; http://www.cs.gc.cuny.edu/~sartemov | DOI | MR | Zbl
[3] Artemov S., “Unified semantics for modality and lambda-terms via proof polynomials”, Algebras, diagrams and decisions in language, logic and computation, CSLI Publ., eds. K. Vermeulen, A. Copestake, Stanford Univ., Stanford, 2002 | MR
[4] Bierman G., de Paiva V., “Intuitionistic necessity revisited”, Proc. Logic at Work Conf. (Amsterdam, Dec. 1992); Second revision, June, 1996; http://theory.doc.ic.ac.uk/tfm/papers.html
[5] Boolos G., Logic of provability, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[6] Buss S., “The modal logic of pure provability”, Notre Dame J. Formal Logic, 31:2 (1990), 225–231 | DOI | MR | Zbl
[7] Girard J.-Y., Lafont Y., Taylor P., Proofs and types, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[8] Gödel K., “Eine Interpretation des intuitionistischen Aussagenkalkuls”, Ergeb. Math. Kolloq., 4 (1933), 39–40 | Zbl
[9] Gödel K., “Vortrag bei Zilsel”, 1938, Kurt Gödel collected works, v. 3, eds. S. Feferman, Oxford Univ. Press, New York, 1995, 86–113 | MR
[10] Goldblatt R., “Arithmetical necessity, provability and intuitionistic logic”, Theoria, 44 (1978), 38–46 | MR | Zbl
[11] Heyting A., “Die intuitionistische Grundlegung der Mathematik”, Erkenntnis, 2 (1931), 106–115 | DOI | Zbl
[12] Heyting A., Matematische Grundlagenforschung. Intuitionismus. Beweistheorie, Springer, Berlin, 1934 | MR | Zbl
[13] Kolmogoroff A., “Zur Deutung der intuitionistischen Logik”, Math. Ztschr., 35 (1932), 58–65 | DOI | MR | Zbl
[14] Kolmogorov A. N., “K rabotam po intuitsionistskoi logike”, Izbr. trudy. Matematika i mekhanika, Nauka, M., 1985, 393 | MR
[15] Kozen D., Tiuryn J., “Logic of programs”, Handbook of theoretical computer science. V. B: Formal models and semantics, MIT Press, Elsevier, Boston, Amsterdam, 1990, 789–840. | MR
[16] Kreisel G., “Foundations of intuitionistic logic”, Logic, methodology and philosophy of science, Proc. 1960 Intern. Congr., eds. E. Nagel, P. Suppes, A. Tarski, Stanford Univ. Press, Stanford, 1962, 198–210 | MR
[17] Kreisel G., “On weak completeness of intuitionistic predicate logic”, J. Symb. Logic, 27 (1962), 139–158 | DOI | MR
[18] Kreisel G., “Mathematical logic”, Lectures in modern mathematics, 3, ed. T. L. Saaty, J. Wiley and Sons, New York, 1965, 95–195 | MR | Zbl
[19] Kripke S., “Semantical considerations on modal logic”, Acta Philos. Fenn., 16 (1963), 83–94 | MR | Zbl
[20] Kripke S., “Semantical analysis of intuitionistic logic, I”, Formal systems and recursive functions, Proc. 8th Logic Colloq., eds. J. N. Crossley, M. A. E. Dummett, North-Holland, Amsterdam, 1965, 92–130 | MR
[21] Krupski V. N., “Operational logic of proofs with functionality condition on proof predicate”, Logical Foundations of Computer Science (Yaroslavl, 1997), Lect. Notes Comput. Sci., 1234, 1997, 167–177 | MR | Zbl
[22] Kuznetsov A. V., Muravitskii A. Yu., Logika dokazuemosti, Abstr. 4-i Vsesoyuz. konf. po matematicheskoi logike, Kishinev, 1976, 73
[23] Läuchli H., “An absract notion of realizability for which intuitionistic predicate logic is complete”, Intuitionism and proof theory, eds. J. Myhill, A. Kino, R. E. Vesley, North-Holland, Amsterdam, 1970, 227–234 | MR
[24] Lemmon E., “New foundations for Lewis's modal systems”, J. Symb. Logic, 22 (1957), 176–186 | DOI | MR | Zbl
[25] Lewis C. I., Langford C. H., Symbolic logic, Appleton-Century-Crifts, New York, 1932; Reprinted Dover Publ., New York, 1951, 1959
[26] Martini S., Masini A., “A computational interpretation of modal proofs”, Proof theory of modal logics, Workshop Proc., Kluwer, Dordrecht, 1994 | Zbl
[27] McKinsey J. C. C., Tarski A., “Some theorems about the sentential calculi of Lewis and Heyting”, J. Symb. Logic, 13 (1948), 1–15 | DOI | MR | Zbl
[28] Medvedev Yu. T., “Finitnye zadachi”, DAN SSSR, 142:5 (1962), 1015–1018 | MR | Zbl
[29] Montague R., “Syntactical treatments of modality with corollaries on reflection principles and finite axiomatizability”, Acta Philos. Fenn., 16 (1963), 153–168 | MR
[30] Myhill J., “Some remarks on the notion of proof”, J. Philos., 57 (1960), 461–471 | DOI | MR
[31] Myhill J., “Intensional set theory”, Intensional mathematics, ed. S. Shapiro, North-Holland, Amsterdam, 1985, 47–61 | MR
[32] Novikov P. S., Konstruktivnaya matematicheskaya logika s tochki zreniya klassicheskoi, Nauka, M., 1977 | MR
[33] Orlov I. E., “Ischislenie sovmestimosti vyskazyvanii”, Mat. sb., 35 (1928), 263–286 | Zbl
[34] Pfenning F., Wong H. C., On a modal lambda-calculus for S4, El. Notes Theor. Comput. Sci., 1, Elsevier, Amsterdam, 1995 | MR | Zbl
[35] Shapiro S., “Intensional mathematics and constructive mathematics”, Intensional mathematics, North-Holland, Amsterdam, 1985, 1–10 | MR
[36] Smorynski C., “The incompleteness theorems”, Handbook of mathematical logic, North-Holland, Amsterdam, 1977, 821–865 | MR
[37] Troelstra A. S., van Dalen D., Constructivism in mathematics. An introduction, V. 1, North-Holland, Amsterdam, 1988
[38] Troelstra A. S., Schwichtenberg H., Basic proof theory, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[39] Uspenskii V. A., Plisko V. E., “Intuitsionistskaya logika”, Kolmogorov A. N., Izbr. trudy. Matematika i mekhanika, Nauka, M., 1985, 394–404
[40] Weinstein S., “The intended interpretation of intuitionistic logic”, J. Philos. Logic, 12 (1983), 261–270 | DOI | MR | Zbl