Algebras with the Same (Algebraic) Geometry
Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 176-207

Voir la notice de l'article provenant de la source Math-Net.Ru

Some basic notions of classical algebraic geometry can be defined on arbitrary varieties of algebras $\Theta$. For every algebra $H$ in $\Theta$, one can consider algebraic geometry in $\Theta$ over $H$. Correspondingly, algebras in $\Theta$ are considered with the emphasis on equations and geometry. We give examples of geometric properties of algebras in $\Theta$ and of geometric relations between them. The main problem considered in the paper is when different $H_1$ and $H_2$ have the same geometry.
@article{TRSPY_2003_242_a13,
     author = {B. I. Plotkin},
     title = {Algebras with the {Same} {(Algebraic)} {Geometry}},
     journal = {Informatics and Automation},
     pages = {176--207},
     publisher = {mathdoc},
     volume = {242},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a13/}
}
TY  - JOUR
AU  - B. I. Plotkin
TI  - Algebras with the Same (Algebraic) Geometry
JO  - Informatics and Automation
PY  - 2003
SP  - 176
EP  - 207
VL  - 242
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a13/
LA  - en
ID  - TRSPY_2003_242_a13
ER  - 
%0 Journal Article
%A B. I. Plotkin
%T Algebras with the Same (Algebraic) Geometry
%J Informatics and Automation
%D 2003
%P 176-207
%V 242
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a13/
%G en
%F TRSPY_2003_242_a13
B. I. Plotkin. Algebras with the Same (Algebraic) Geometry. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 176-207. http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a13/