Full and Uniform Sequences
Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 141-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The point of view that we follow in this paper is to get information on the structure of a word $w$ by considering some suitable conditions on the number of occurrences in $w$ of any other word $u$. In this framework, two notions are very natural and of great interest, the fullness and the uniformity of a word. We study some properties of these notions.
@article{TRSPY_2003_242_a11,
     author = {A. Carpi and A. de Luca},
     title = {Full and {Uniform} {Sequences}},
     journal = {Informatics and Automation},
     pages = {141--146},
     publisher = {mathdoc},
     volume = {242},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a11/}
}
TY  - JOUR
AU  - A. Carpi
AU  - A. de Luca
TI  - Full and Uniform Sequences
JO  - Informatics and Automation
PY  - 2003
SP  - 141
EP  - 146
VL  - 242
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a11/
LA  - en
ID  - TRSPY_2003_242_a11
ER  - 
%0 Journal Article
%A A. Carpi
%A A. de Luca
%T Full and Uniform Sequences
%J Informatics and Automation
%D 2003
%P 141-146
%V 242
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a11/
%G en
%F TRSPY_2003_242_a11
A. Carpi; A. de Luca. Full and Uniform Sequences. Informatics and Automation, Mathematical logic and algebra, Tome 242 (2003), pp. 141-146. http://geodesic.mathdoc.fr/item/TRSPY_2003_242_a11/

[1] Carpi A., de Luca A., “Words and special factors”, Theor. Comput. Sci., 259 (2001), 145–182 | DOI | MR | Zbl

[2] Carpi A., de Luca A., “Uniform words”, Adv. Appl. Math. (to appear)

[3] de Bruijn N. G., “A combinatorial problem”, Proc. Ned. Akad. Wet., 49 (1946), 758–764 | MR

[4] Fredricksen H., “A survey of full length nonlinear shift register cycle algorithms”, SIAM Rev., 24 (1982), 195–221 | DOI | MR | Zbl

[5] Lothaire M., Combinatorics on words, 2nd ed., Cambridge Math. Library, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[6] Marshall A. W., Olkin I., Inequalities: Theory of majorization and its applications, Acad. Press, New York, 1979 | MR