Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_241_a9, author = {A. N. Parshin}, title = {Vector {Bundles} and {Arithmetic} {Groups.~II}}, journal = {Informatics and Automation}, pages = {179--191}, publisher = {mathdoc}, volume = {241}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a9/} }
A. N. Parshin. Vector Bundles and Arithmetic Groups.~II. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 179-191. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a9/
[1] Bass H., “Liberation des modules projectifs sur certains anneaux de polynômes”, Séminaire Bourbaki, 1973/74, Exp. 448, Lect. Notes Math., 431, Springer, Berlin, 1975, 228–354 | MR
[2] Bogomolov F. A., “Golomorfnye tenzory i vektornye rassloeniya na proektivnykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 42:6 (1978), 1227–1287 | MR | Zbl
[3] Fimmel T., Parshin A. N., Introduction into the higher adelic theory, Preprint, Moscow, 1996
[4] Fulton W., Intersection theory, Springer, Berlin, 1984 ; Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR | Zbl | MR
[5] Griffiths Ph., Harris J., “Residues and zero-cycles on algebraic varieties”, Ann. Math., 108 (1978), 461–505 | DOI | MR | Zbl
[6] Grunewald F., Mennicke J., Vaserstein L., “On the groups $\mathrm{SL}_2(\mathbf{Z}[x])$ and $\mathrm{SL}_2(k[x,y])$”, Israel J. Math., 86 (1994), 157–193 | DOI | MR | Zbl
[7] Horrocks G., “Vector bundles on the punctured spectrum of a local ring”, Proc. London Math. Soc. Ser. 3, 14 (1964), 689–713 | DOI | MR | Zbl
[8] Huber A., “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl
[9] Humphreys J. E., Arithmetic groups, Lect. Notes Math., 789, Springer, Berlin etc., 1980 ; Khamfri Dzh., Arifmeticheskie gruppy, Mir, M., 1983 | MR | Zbl | MR
[10] Langton S., “Valuative criteria for families of vector bundles on algebraic varieties”, Ann. Math., 101 (1975), 88–110 | DOI | MR | Zbl
[11] Lipman J., “On complete ideals in regular local rings”, Algebraic geometry and commutative algebra (in honor of Masayoshi Nagata), Kinokuniya, Tokyo, 1988, 203–231 | MR
[12] Maruyama M., “Elementary transformations in the theory of algebraic vector bundles”, Algebraic geometry (La Rábida, 1981), Lect. Notes Math., 961, Springer, Berlin etc., 1982, 241–266 | MR
[13] Milnor J., Introduction to algebraic K-theory, Ann. Math. Stud., 72, Princeton Univ. Press, Princeton, 1971 ; Milnor Dzh., Vvedenie v algebraicheskuyu K-teoriyu, Mir, M., 1974 | MR | Zbl | MR | Zbl
[14] Parshin A. N., “Chern classes, adeles and $L$-functions”, J. Reine und Angew. Math., 341 (1983), 174–192 | MR | Zbl
[15] Parshin A. N., “Higher Bruhat–Tits buildings and vector bundles on an algebraic surface”, Algebra and number theory, Proc. Conf. Inst. Exp. Math. Univ. Essen (Dec. 2–4, 1992), de Gruyter, Berlin, 1994, 165–192 | MR | Zbl
[16] Parshin A. N., “Vektornye rassloeniya i arifmeticheskie gruppy, I”, Tr. MIAN, 208, 1995, 240–265 | MR | Zbl
[17] Parshin A. N., “Integrable systems and local fields”, Commun. Algebra, 29:9 (2001), 4157–4181 | DOI | MR | Zbl
[18] Parshin A. N., “The Bruhat–Tits buildings over higher dimensional local fields”, Invitation to higher local fields, Proc. Conf. (Münster, Aug.–Sept. 1999), Geom. and Topol. Monogr., 3, Geom. and Topol. Publ., Coventry, 2000, 223–238 | MR
[19] Raynaud M., “Fibrés vectoriels instables—applications aux surfaces (d'après Bogomolov)”, Surfaces algébriques, Lect. Notes Math., 868, eds. J. Giraud, L. Illusie, M. Raynaud, Springer, Berlin etc., 1981, 293–314 | MR
[20] Serre J.-P., “Prolongement de faisceaux analytiques cohérents”, Ann. Inst. Fourier, 16 (1966), 363–374 | MR | Zbl
[21] Serre J.-P., Arbres, amalgames, $\mathrm{SL}_2$, Astérisque, 46, Soc. Math. France, Paris, 1977 ; Serr Zh.-P., “Derevya, amalgamy i $\mathrm{SL}_2$”, Matematika, 18:1 (1974), 3–51 ; 2, 3–27 | MR | Zbl
[22] Suslin A. A., “O stabilno svobodnykh modulyakh”, Mat. sb., 102:4 (1977), 537–550 | MR | Zbl