The Equicharacteristic Case of the Gersten Conjecture
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 169-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the well-known problems in the algebraic $K$-theory is the Gersten conjecture. The geometric case of this conjecture was proved by D. Quillen. The equicharacteristic case of the conjecture is proved in this paper. This covers the result of Quillen. Actually we use the result of Quillen and certain results of D. Popescu and A. Grothendieck.
@article{TRSPY_2003_241_a8,
     author = {I. A. Panin},
     title = {The {Equicharacteristic} {Case} of the {Gersten} {Conjecture}},
     journal = {Informatics and Automation},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - The Equicharacteristic Case of the Gersten Conjecture
JO  - Informatics and Automation
PY  - 2003
SP  - 169
EP  - 178
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/
LA  - en
ID  - TRSPY_2003_241_a8
ER  - 
%0 Journal Article
%A I. A. Panin
%T The Equicharacteristic Case of the Gersten Conjecture
%J Informatics and Automation
%D 2003
%P 169-178
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/
%G en
%F TRSPY_2003_241_a8
I. A. Panin. The Equicharacteristic Case of the Gersten Conjecture. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 169-178. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/

[1] Bloch S., Ogus A., “Gersten's conjecture and the homology of schemes”, Ann. Sci. École Norm. Supér. Sér. 4, 7 (1974), 181–202 | MR

[2] Colliot-Théléne J.-L., Hoobler R., Kahn B., “The Bloch–Ogus–Gabber theorem”, Fields Inst. Commun., 16 (1997), 31–94 | MR | Zbl

[3] Gabber O., “Gersten's conjecture for some complexes of vanishing cycles”, Manuscr. Math., 85 (1994), 323–343 | DOI | MR | Zbl

[4] Gersten S. M., “Some exact sequences in the higher $K$-theory of rings”, Algebraic $K$-theory. I: Higher $K$-theories, Proc. Conf. Battelle Memorial Inst. (Seattle, WA, 1972), Lect. Notes Math., 341, Springer, Berlin etc., 1973, 211–243 | MR

[5] Grayson D., “Universal exactness in algebraic $K$-theory”, J. Pure and Appl. Algebra, 36 (1985), 139–141 | DOI | MR | Zbl

[6] Gros M., Suwa N., “La conjecture de Gersten pour les faisceaux de Hodge–Witt logarithmique”, Duke Math. J., 57:2 (1988), 615–628 | DOI | MR | Zbl

[7] Grothendieck A., Artin M., Verdie J.-L., Theorie des topos et cohomologie etale des schemas, Lect. Notes Math., 270, Springer, Berlin etc., 1972 | MR | Zbl

[8] Quillen D., “Higher algebraic $K$-theory, I”, Algebraic $K$-theory. I: Higher $K$-theories, Proc. Conf. Battelle Memorial Inst. (Seattle, WA, 1972), Lect. Notes Math., 341, Springer, Berlin etc., 1973, 85–147 | MR

[9] Panin I. A., Suslin A. A., “Ob odnoi gipoteze Grotendika, kasayuscheisya algebr Adzumaia”, Algebra i analiz, 9:4 (1997), 215–223 | MR | Zbl

[10] Popescu D., “General Néron desingularization”, Nagoya Math. J., 100 (1985), 97–126 | MR | Zbl

[11] Popescu D., “General Néron desingularization and approximation”, Nagoya Math. J., 104 (1986), 85–115 | MR | Zbl

[12] Popescu D., “Letter to the editor; General Néron desingularization and approximation”, Nagoya Math. J., 118 (1990), 45–53 | MR | Zbl

[13] Rost M., “Chow groups with coefficients”, Documenta Math., 1 (1996), 319–393 | MR | Zbl

[14] Sherman C. C., “The $K$-theory of an equicharacteristic discrete valuation ring injects into the $K$-theory of its field of quotients”, Pacif. J. Math., 74:2 (1978), 497–499 | MR

[15] Swan R. G., “Néron–Popescu desingularization”, Algebra and geometry, Proc. Intern. Conf. (Taipei, 1995), Lect. Algebra Geom., 2, Intern. Press, Cambridge, MA, 1998, 135–192 | MR

[16] Voevodsky V., “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. Math. Stud., 143, eds. V. Voevodsky, A. Suslin, E. Friedlander, Princeton Univ. Press, Princeton, 2000, 87–137 | MR | Zbl