The Equicharacteristic Case of the Gersten Conjecture
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 169-178

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the well-known problems in the algebraic $K$-theory is the Gersten conjecture. The geometric case of this conjecture was proved by D. Quillen. The equicharacteristic case of the conjecture is proved in this paper. This covers the result of Quillen. Actually we use the result of Quillen and certain results of D. Popescu and A. Grothendieck.
@article{TRSPY_2003_241_a8,
     author = {I. A. Panin},
     title = {The {Equicharacteristic} {Case} of the {Gersten} {Conjecture}},
     journal = {Informatics and Automation},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - The Equicharacteristic Case of the Gersten Conjecture
JO  - Informatics and Automation
PY  - 2003
SP  - 169
EP  - 178
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/
LA  - en
ID  - TRSPY_2003_241_a8
ER  - 
%0 Journal Article
%A I. A. Panin
%T The Equicharacteristic Case of the Gersten Conjecture
%J Informatics and Automation
%D 2003
%P 169-178
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/
%G en
%F TRSPY_2003_241_a8
I. A. Panin. The Equicharacteristic Case of the Gersten Conjecture. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 169-178. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a8/