On a~Classical Correspondence between K3 Surfaces
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 132-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a K3 surface that is the intersection (i.e. a net $\mathbb P^2$) of three quadrics in $\mathbb P^5$. The curve of degenerate quadrics has degree 6 and defines a natural double covering $Y$ of $\mathbb P^2$ ramified in this curve which is again a K3. This is a classical example of a correspondence between K3 surfaces that is related to the moduli of sheaves on K3 studied by Mukai. When are general (for fixed Picard lattices) $X$ and $Y$ isomorphic? We give necessary and sufficient conditions in terms of Picard lattices of $X$ and $Y$. For example, for the Picard number 2, the Picard lattice of $X$ and $Y$ is defined by its determinant $-d$, where $d>0$, $d\equiv 1\mod 8$, and one of the equations $a^2-db^2=8$ or $a^2-db^2=-8$ has an integral solution $(a,b)$. Clearly, the set of these $d$ is infinite: $d\in \{(a^2\mp 8)/b^2\}$, where $a$ and $b$ are odd integers. This gives all possible divisorial conditions on the 19-dimensional moduli of intersections of three quadrics $X$ in $\mathbb P^5$, which imply $Y\cong X$. One of them, when $X$ has a line, is classical and corresponds to $d=17$. Similar considerations can be applied to a realization of an isomorphism $(T(X)\otimes \mathbb Q, H^{2,0}(X)) \cong (T(Y)\otimes \mathbb Q, H^{2,0}(Y))$ of transcendental periods over $\mathbb Q$ of two K3 surfaces $X$ and $Y$ by a fixed sequence of types of Mukai vectors.
@article{TRSPY_2003_241_a7,
     author = {C. G. Madonna and V. V. Nikulin},
     title = {On {a~Classical} {Correspondence} between {K3} {Surfaces}},
     journal = {Informatics and Automation},
     pages = {132--168},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a7/}
}
TY  - JOUR
AU  - C. G. Madonna
AU  - V. V. Nikulin
TI  - On a~Classical Correspondence between K3 Surfaces
JO  - Informatics and Automation
PY  - 2003
SP  - 132
EP  - 168
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a7/
LA  - ru
ID  - TRSPY_2003_241_a7
ER  - 
%0 Journal Article
%A C. G. Madonna
%A V. V. Nikulin
%T On a~Classical Correspondence between K3 Surfaces
%J Informatics and Automation
%D 2003
%P 132-168
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a7/
%G ru
%F TRSPY_2003_241_a7
C. G. Madonna; V. V. Nikulin. On a~Classical Correspondence between K3 Surfaces. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 132-168. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a7/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, 3-e izd., Nauka, M., 1985, 503 pp. | MR | Zbl

[2] Cossec F. R., “Reye congruences”, Trans. Amer. Math. Soc., 280:2 (1983), 737–751 | DOI | MR | Zbl

[3] James D. G., “On Witt's theorem for unimodular quadratic forms”, Pacif. J. Math., 26 (1968), 303–316 | MR | Zbl

[4] Madonna C., A remark on K3s of Todorov type $(0,9)$ and $(0,10)$, , 2002 http://arxiv.org/ abs/math.AG/0205146

[5] Mayer A., “Families of K3 surfaces”, Nagoya Math. J., 48 (1972), 1–17 | MR | Zbl

[6] Mukai Sh., “Symplectic structure of the moduli space of sheaves on an Abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[7] Mukai Sh., “On the muduli space of bundles on K3 surfaces”, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, Bombay, 1987, 341–413 | MR | Zbl

[8] Mukai Sh., “Duality of polarized K3 surfaces”, New trends in algebraic geometry, Selected papers presented at the Euro Conf. (Warwick, UK, July 1996), LMS Lect. Notes Ser., 264, ed. K. Hulek, Cambridge Univ. Press, Cambridge, 1999, 311–326 | MR | Zbl

[9] Nikulin V. V., “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa K3”, Tr. Mosk. mat. o-va, 38, 1979, 75–137 | MR | Zbl

[10] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. mat., 43:1 (1979), 111–177 | MR | Zbl

[11] Nikulin V. V., “O sootvetstviyakh mezhdu poverkhnostyami tipa K3”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 402–411 | MR | Zbl

[12] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 530–572

[13] Saint-Donat B., “Projective models of K3 surfaces”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR | Zbl

[14] I. R. Shafarevich (red.), Algebraicheskie poverkhnosti, Tr. MIAN, 75, Nauka, M., 1965 | MR | Zbl

[15] Shokurov V. V., “Teorema Nëtera–Enrikvesa o kanonicheskikh krivykh”, Mat. sb., 86:3 (1971), 367–408 | Zbl

[16] Tyurin A. N., “Peresechenie kvadrik”, UMN, 30:6 (1975), 51–99 | MR | Zbl

[17] Verra A., “The étale double covering of an Enriques surface”, Rend. Sem. Mat. Univ. Politec. Torino, 41:3 (1983), 131–167 | MR | Zbl