Generalized Chisini's Conjecture
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 122-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

Chisini's Conjecture claims that a generic covering of the plane of degree $\geq 5$ is determined uniquely by its branch curve. A generalization (to the case of normal surfaces) of Chisini's Conjecture is formulated and considered. The generalized conjecture is checked in the following two cases: when the maximum of degrees of two generic coverings $\geq 12$ and when it $\leq 4$. Conditions on the number of singular points of a cuspidal curve $B$ necessary for $B$ to be the branch curve of a generic covering of given degree are found. In particular, it is shown that, if $B$ is a pure cuspidal curve (i.e. all its singular points are ordinary cusps), then $B$ can be the branch curve only of a generic covering of degree $\leq 5$.
@article{TRSPY_2003_241_a6,
     author = {Vik. S. Kulikov},
     title = {Generalized {Chisini's} {Conjecture}},
     journal = {Informatics and Automation},
     pages = {122--131},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Generalized Chisini's Conjecture
JO  - Informatics and Automation
PY  - 2003
SP  - 122
EP  - 131
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a6/
LA  - ru
ID  - TRSPY_2003_241_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Generalized Chisini's Conjecture
%J Informatics and Automation
%D 2003
%P 122-131
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a6/
%G ru
%F TRSPY_2003_241_a6
Vik. S. Kulikov. Generalized Chisini's Conjecture. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 122-131. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a6/

[1] Brieskorn E., “Die Auflösung der rationalen Singularitäten holomorpher Abbildungen”, Math. Ann., 178 (1968), 255–270 | DOI | MR | Zbl

[2] Chisini O., “Sulla identita birazionale delle funzioni algebriche di due variabili dotate di una medesima curva di diramazione”, Rend. Ist. Lombardo, 77 (1944), 339–356 | MR | Zbl

[3] Grauert H., Remmert R., “Komplexe Räume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl

[4] Hirzebruch F., “Singularities of algebraic surfaces and haracteristic numbers”, Algebraic geometry, Proc. Lefschetz Centen. Conf. Pt. 1 (Mexico City, 1984), Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986, 141–155 | MR

[5] Hirano A., “Construction of plane curves with cusps”, Saitama Math. J., 10 (1992), 21–24 | MR | Zbl

[6] Kulikov Vik. S., “O gipoteze Kizini”, Izv. RAN. Ser. mat., 63:6 (1999), 83–116 | MR | Zbl

[7] Kulikov V. S., Kulikov Vik. S., “Obschie nakrytiya ploskosti s $A$–$D$–$E$ osobennostyami”, Izv. RAN. Ser. mat., 64:6 (2000), 65–106 | MR | Zbl

[8] Nemirovskii S. Yu., “K teoreme Kulikova o gipoteze Kizini”, Izv. RAN. Ser. mat., 65:1 (2001), 77–80 | MR | Zbl

[9] Paccagnan D., “Maximum number of cusps on algebraic plane curves and nodes on surfaces”, Intern. Congr. Math., Abstr. Commun. and Poster Sess., Berlin, 1998, 59

[10] Zariski O., “On the topological discriminant group of a Riemann surface of genus $p$”, Amer. J. Math., 59 (1937), 335–358 | DOI | MR | Zbl