Two Nonconjugate Embeddings of the Group $S_3\times\mathbb Z_2$ into the Cremona Group
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 105-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

A concrete example of two isomorphic nonconjugate subgroups in the two-dimensional Cremona group is presented.
@article{TRSPY_2003_241_a4,
     author = {V. A. Iskovskikh},
     title = {Two {Nonconjugate} {Embeddings} of the {Group} $S_3\times\mathbb Z_2$ into the {Cremona} {Group}},
     journal = {Informatics and Automation},
     pages = {105--109},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a4/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - Two Nonconjugate Embeddings of the Group $S_3\times\mathbb Z_2$ into the Cremona Group
JO  - Informatics and Automation
PY  - 2003
SP  - 105
EP  - 109
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a4/
LA  - ru
ID  - TRSPY_2003_241_a4
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T Two Nonconjugate Embeddings of the Group $S_3\times\mathbb Z_2$ into the Cremona Group
%J Informatics and Automation
%D 2003
%P 105-109
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a4/
%G ru
%F TRSPY_2003_241_a4
V. A. Iskovskikh. Two Nonconjugate Embeddings of the Group $S_3\times\mathbb Z_2$ into the Cremona Group. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 105-109. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a4/

[1] Iskovskikh V. A., “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. mat., 43:1 (1979), 19–43 | MR | Zbl

[2] Iskovskikh V. A., “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (1996), 3–72 | MR | Zbl

[3] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami, II”, Mat. sb., 72:2 (1967), 161–192 | MR | Zbl