Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_241_a3, author = {Yu. G. Zarhin}, title = {Homomorphisms of {Hyperelliptic} {Jacobians}}, journal = {Informatics and Automation}, pages = {90--104}, publisher = {mathdoc}, volume = {241}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a3/} }
Yu. G. Zarhin. Homomorphisms of Hyperelliptic Jacobians. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 90-104. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a3/
[1] Abhyankar S. S., “Projective polynomials”, Proc. Amer. Math. Soc., 125:6 (1997), 1643–1650 | DOI | MR | Zbl
[2] Curtis Ch. W., Reiner I., Methods of representation theory, V. 1, J. Wiley Sons, Chichester Brisbane, New York, Toronto, 1981 | MR
[3] Dixon J. D., Mortimer B., Permutation groups, Springer, New York, Berlin, Heidelberg, 1996 | MR
[4] Huppert B., Endliche Gruppen, I, Springer, Berlin, Heidelberg, New York, 1967 | MR | Zbl
[5] Huppert B., Blackburn N., Finite groups, III, Springer, Berlin, Heidelberg, New York, 1982 | MR
[6] Janusz G. J., Algebraic number fields, 2nd ed., Amer. Math. Soc., Providence, RI, 1996 | MR
[7] Klemm M., “Über die Reduktion von Permutationsmoduln”, Math. Ztschr., 143 (1975), 113–117 | DOI | MR | Zbl
[8] Koblitz N., $p$-Adic numbers, $p$-adic analysis, and zeta-functions, Springer, Berlin, Heidelberg, New York, 1977 | MR | Zbl
[9] Ivanov A. A., Praeger Ch. E., “On finite affine 2-arc transitive graphs”, Europ. J. Comb., 14:5 (1993), 421–444 | DOI | MR | Zbl
[10] Lang S., Algebra, 3rd ed., Addison–Wesley, Reading, MA, 1993 | MR | Zbl
[11] Mori Sh., “The endomorphism rings of some abelian varieties, II”, Japan. J. Math., 3 (1977), 105–109 | MR | Zbl
[12] Mortimer B., “The modular permutation representations of the known doubly transitive groups”, Proc. London Math. Soc. Ser. 3, 41 (1980), 1–20 | DOI | MR | Zbl
[13] Mumford D., “Theta characteristics of an algebraic curve”, Ann. Sci. École Norm. Supér. Sér. 4, 4 (1971), 181–192 | MR | Zbl
[14] Mumford D., Abelian varieties, 2nd ed., Oxford Univ. Press, London, 1974 | MR | Zbl
[15] Schur I., “Gleichungen ohne Affect”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1930, 443–449 ; Ges. Abh., 3, 191–197 | Zbl
[16] Serre J.-P., Lectures on the Mordell–Weil theorem, 2nd ed., F. Vieweg Sohn, Braunschweig, Wiesbaden, 1989 | MR | Zbl
[17] Serre J.-P., Topics in Galois theory, Jones and Bartlett Publ., Boston, London, 1992 | MR | Zbl
[18] Serre J.-P., Représentations linéaires des groupes finis, 3me éd., Hermann, Paris, 1978 | MR | Zbl
[19] Suzuki M., Group theory, I, Springer, Berlin, Heidelberg, New York, 1982 | MR | Zbl
[20] Zarhin Yu. G., “Hyperelliptic Jacobians without complex multiplication”, Math. Res. Lett., 7:1 (2000), 123–132 | MR | Zbl
[21] Zarhin Yu. G., “Hyperelliptic Jacobians and modular representations”, Moduli of abelian varieties, Progr. Math., eds. C. Faber, G. van der Geer, F. Oort, Birkhäuser, Basel, Boston, Berlin, 2001, 473–490 | MR | Zbl
[22] Zarhin Yu. G., “Hyperelliptic Jacobians without complex multiplication in positive characteristic”, Math. Res. Lett., 8:4 (2001), 429–435 | MR | Zbl
[23] Zarhin Yu. G., “Very simple $2$-adic representations and hyperelliptic Jacobians”, Moscow Math. J., 2:2 (2002), 403–431 | MR | Zbl
[24] Zarhin Yu. G., “Hyperelliptic Jacobians and simple groups $\mathrm{U}_3(2^m)$”, Proc. Amer. Math. Soc., 131:1 (2003), 95–102 | DOI | MR | Zbl