Discrete Convexity and Hermitian Matrices
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 68-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question (Horn problem) about the spectrum of the sum of two real symmetric (or complex Hermitian) matrices with given spectra is considered. This problem was solved by A. Klyachko. We suggest a different formulation of the solution to the Horn problem with a significantly more elementary proof. Our solution is that the existence of the required triple of matrices $(A,B,C)$ for given spectra $(\alpha,\beta,\gamma)$ is equivalent to the existence of a so-called discrete concave function on the triangular grid $\Delta(n)$ with boundary increments $\alpha$,$\beta$, and $\gamma$. In addition, we propose a hypothetical explanation for the relation between Hermitian matrices and discrete concave functions. Namely, for a pair $(A,B)$ of Hermitian matrices, we construct a certain function $\phi (A,B;\cdot)$ on the grid $\Delta(n)$. Our conjecture is that this function is discrete concave, which is confirmed in several special cases.
@article{TRSPY_2003_241_a2,
     author = {V. I. Danilov and G. A. Koshevoy},
     title = {Discrete {Convexity} and {Hermitian} {Matrices}},
     journal = {Informatics and Automation},
     pages = {68--89},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a2/}
}
TY  - JOUR
AU  - V. I. Danilov
AU  - G. A. Koshevoy
TI  - Discrete Convexity and Hermitian Matrices
JO  - Informatics and Automation
PY  - 2003
SP  - 68
EP  - 89
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a2/
LA  - ru
ID  - TRSPY_2003_241_a2
ER  - 
%0 Journal Article
%A V. I. Danilov
%A G. A. Koshevoy
%T Discrete Convexity and Hermitian Matrices
%J Informatics and Automation
%D 2003
%P 68-89
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a2/
%G ru
%F TRSPY_2003_241_a2
V. I. Danilov; G. A. Koshevoy. Discrete Convexity and Hermitian Matrices. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 68-89. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a2/

[1] Lidskii V. B., “O sobstvennykh znacheniyakh summy i proizvedeniya simmetricheskikh matrits”, DAN SSSR, 75:6 (1950), 769–772 | MR | Zbl

[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[3] Fulton W., “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc., 37:3 (2000), 209–249 | DOI | MR | Zbl

[4] Horn A., “Eigenvalues of sums of Hermitian matrices”, Pacif. J. Math., 12 (1962), 225–241 | MR | Zbl

[5] Klyachko A. A., “Stable bundels, representanion theory and Hermitian operators”, Sel. Math., 4:3 (1998), 419–445 | DOI | MR | Zbl

[6] Knutson A., “The symplectic and algebraic geometry of Horn's problem”, Lin. Alg. and Appl., 319:1/3 (2000), 61–81 | DOI | MR | Zbl

[7] Knutson A., Tao T., “The honeycomb model of $GL_n(\mathbb{C})$ tensor product. I: Proof of the saturation conjecture”, J. Amer. Math. Soc., 12 (1999), 1055–1090 | DOI | MR | Zbl

[8] Knutson A., Tao T., Woodward C., The honeycomb model of $GL_n(\mathbb{C})$ tensor product. II: Puzzles determine facets of the Littlewood–Richardson cone, , 2001 http:// arxiv.org/abs/math.CO/0107011 | MR

[9] Karzanov A. V., Concave cocirculations in a triangular grid, , 2003 ; Lin. Alg. and Appl. (to appear) http://arxiv.org/ abs/math.CO/0304289 | MR