Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2003_241_a2, author = {V. I. Danilov and G. A. Koshevoy}, title = {Discrete {Convexity} and {Hermitian} {Matrices}}, journal = {Informatics and Automation}, pages = {68--89}, publisher = {mathdoc}, volume = {241}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a2/} }
V. I. Danilov; G. A. Koshevoy. Discrete Convexity and Hermitian Matrices. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 68-89. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a2/
[1] Lidskii V. B., “O sobstvennykh znacheniyakh summy i proizvedeniya simmetricheskikh matrits”, DAN SSSR, 75:6 (1950), 769–772 | MR | Zbl
[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[3] Fulton W., “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc., 37:3 (2000), 209–249 | DOI | MR | Zbl
[4] Horn A., “Eigenvalues of sums of Hermitian matrices”, Pacif. J. Math., 12 (1962), 225–241 | MR | Zbl
[5] Klyachko A. A., “Stable bundels, representanion theory and Hermitian operators”, Sel. Math., 4:3 (1998), 419–445 | DOI | MR | Zbl
[6] Knutson A., “The symplectic and algebraic geometry of Horn's problem”, Lin. Alg. and Appl., 319:1/3 (2000), 61–81 | DOI | MR | Zbl
[7] Knutson A., Tao T., “The honeycomb model of $GL_n(\mathbb{C})$ tensor product. I: Proof of the saturation conjecture”, J. Amer. Math. Soc., 12 (1999), 1055–1090 | DOI | MR | Zbl
[8] Knutson A., Tao T., Woodward C., The honeycomb model of $GL_n(\mathbb{C})$ tensor product. II: Puzzles determine facets of the Littlewood–Richardson cone, , 2001 http:// arxiv.org/abs/math.CO/0107011 | MR
[9] Karzanov A. V., Concave cocirculations in a triangular grid, , 2003 ; Lin. Alg. and Appl. (to appear) http://arxiv.org/ abs/math.CO/0304289 | MR