On the Conjectures of Artin and Shafarevich--Tate
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 254-264

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arithmetic model $\pi\colon X\to\operatorname{Spec}A$ of a smooth projective variety $V$ over a number field $k$, the interrelations between the conjecture of Artin about the finiteness of $\mathrm{Br}(X)$ and the conjecture of Shafarevich–Tate about the finiteness of $\text{III}(\operatorname {Spec}A,\mathrm{Pic}^0(V))$ are studied.
@article{TRSPY_2003_241_a13,
     author = {S. G. Tankeev},
     title = {On the {Conjectures} of {Artin} and {Shafarevich--Tate}},
     journal = {Informatics and Automation},
     pages = {254--264},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a13/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Conjectures of Artin and Shafarevich--Tate
JO  - Informatics and Automation
PY  - 2003
SP  - 254
EP  - 264
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a13/
LA  - ru
ID  - TRSPY_2003_241_a13
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Conjectures of Artin and Shafarevich--Tate
%J Informatics and Automation
%D 2003
%P 254-264
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a13/
%G ru
%F TRSPY_2003_241_a13
S. G. Tankeev. On the Conjectures of Artin and Shafarevich--Tate. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 254-264. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a13/