On the Grayson Spectral Sequence
Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 218-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the canonical homomorphism from the Grayson motivic complexes to the usual ones is a quasi-isomorphism.
@article{TRSPY_2003_241_a12,
     author = {A. A. Suslin},
     title = {On the {Grayson} {Spectral} {Sequence}},
     journal = {Informatics and Automation},
     pages = {218--253},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a12/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - On the Grayson Spectral Sequence
JO  - Informatics and Automation
PY  - 2003
SP  - 218
EP  - 253
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a12/
LA  - en
ID  - TRSPY_2003_241_a12
ER  - 
%0 Journal Article
%A A. A. Suslin
%T On the Grayson Spectral Sequence
%J Informatics and Automation
%D 2003
%P 218-253
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a12/
%G en
%F TRSPY_2003_241_a12
A. A. Suslin. On the Grayson Spectral Sequence. Informatics and Automation, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 218-253. http://geodesic.mathdoc.fr/item/TRSPY_2003_241_a12/

[1] Bloch S., Lichtenbaum S., A spectral sequence for motivic cohomology, , 1995 http:// www.math.uiuc.edu/K-theory/0062/

[2] Friedlander E., Suslin A., “The spectral sequence relating algebraic $K$-theory to motivic cohomology”, Ann. Sci. École Norm. Supér, 35:6 (2002), 773–875 | MR | Zbl

[3] Gabber O., “Affine analog of the proper base change theorem”, Israel J. Math., 87 (1994), 325–335 | DOI | MR | Zbl

[4] Geisser T., Levine M., “The Bloch–Kato conjecture and a theorem of Suslin–Voevodsky”, J. Reine und Angew. Math., 530 (2001), 55–103 | MR | Zbl

[5] Geisser T., Levine M., “The $K$-theory of fields in characteristic $p$”, Invent. Math., 139 (2000), 459–493 | DOI | MR | Zbl

[6] Grayson D., “Weight filtrations via commuting automorphisms”, K-Theory, 9:2 (1995), 139–172 | DOI | MR | Zbl

[7] Levine M., “Techniques of localization in the theory of algebraic cycles”, J. Alg. Geom., 10:2 (2001), 299–363 | MR | Zbl

[8] Morel F., Voevodsky V., “$\mathrm A^1$-homotopy theory of schemes”, Publ. Math. IHES, 1999, no. 90, 45–143 | MR | Zbl

[9] Panin I., Smirnov A., Push-forwards in oriented cohomology theories of algebraic varieties, , 2000 http://www.math.uiuc.edu/K-theory/0459/

[10] Suslin A., Voevodsky V., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The arithmetic and geometry of algebraic cycles, Proc. NATO Adv. Stud. Inst., v. 1 (Banff, Canada, June 7–19, 1998), NATO Sci. Ser. C: Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl

[11] Suslin A., Voevodsky V., “Singular homology of abstract algebraic varieties”, Invent. Math., 123 (1996), 61–94 | DOI | MR | Zbl

[12] Voevodsky V., “Cohomological theory of presheaves with transfers”, Cycles, transfers, and motivic homology theories, Ann. Math. Stud., 143, eds. V. Voevodsky, A. Suslin, E. Friedlander, Princeton Univ. Press, Princeton, 2000, 87–137 | MR | Zbl

[13] Voevodsky V., “Triangulated category of motives over a field”, Cycles, transfers, and motivic homology theories, Ann. Math. Stud., 143, eds. V. Voevodsky, A. Suslin, E. Friedlander, Princeton Univ. Press, Princeton, 2000, 188–238 | MR | Zbl

[14] Voevodsky V., Cancellation theorem, , 2002 http://www.math.uiuc.edu/K-theory/0541/ | MR

[15] Walker M., Motivic complexes and the $K$-theory of automorphisms, , 1997 http://www. math.uiuc.edu/K-theory/0205/ | MR